Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using geodesic length functions, we define a natural family of real codimension 1 subvarieties of Teichmüller space, namely the subsets where the lengths of two distinct simple closed geodesics are of equal length. We investigate the point set topology of the union of all such hypersurfaces using elementary methods. Finally, this analysis is applied to investigate the nature of the Markoff conjecture.
McShane, Greg 1 ; Parlier, Hugo 2
@article{GT_2008_12_4_a0, author = {McShane, Greg and Parlier, Hugo}, title = {Multiplicities of simple closed geodesics and hypersurfaces in {Teichm\"uller} space}, journal = {Geometry & topology}, pages = {1883--1919}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2008}, doi = {10.2140/gt.2008.12.1883}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1883/} }
TY - JOUR AU - McShane, Greg AU - Parlier, Hugo TI - Multiplicities of simple closed geodesics and hypersurfaces in Teichmüller space JO - Geometry & topology PY - 2008 SP - 1883 EP - 1919 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1883/ DO - 10.2140/gt.2008.12.1883 ID - GT_2008_12_4_a0 ER -
%0 Journal Article %A McShane, Greg %A Parlier, Hugo %T Multiplicities of simple closed geodesics and hypersurfaces in Teichmüller space %J Geometry & topology %D 2008 %P 1883-1919 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1883/ %R 10.2140/gt.2008.12.1883 %F GT_2008_12_4_a0
McShane, Greg; Parlier, Hugo. Multiplicities of simple closed geodesics and hypersurfaces in Teichmüller space. Geometry & topology, Tome 12 (2008) no. 4, pp. 1883-1919. doi : 10.2140/gt.2008.12.1883. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1883/
[1] The real analytic theory of Teichmüller space, Lecture Notes in Math. 820, Springer (1980)
,[2] On the unicity conjecture for Markoff numbers, Canad. Math. Bull. 39 (1996) 3
,[3] The geometry of discrete groups, Graduate Texts in Math. 91, Springer (1995)
,[4] Topology, Ellis Horwood Series: Math. and its Applications, Ellis Horwood Ltd. (1988)
,[5] Geometry and spectra of compact Riemann surfaces, Progress in Math. 106, Birkhäuser (1992)
,[6] The geometry and spectrum of the one-holed torus, Comment. Math. Helv. 63 (1988) 259
, ,[7] The uniqueness of the prime Markoff numbers, J. London Math. Soc. $(2)$ 58 (1998) 9
,[8] Markoff numbers, principal ideals and continued fraction expansions, J. Number Theory 87 (2001) 77
,[9] Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge University Press (1988)
, ,[10] Approach to Markoff's minimal forms through modular functions, Ann. of Math. $(2)$ 61 (1955) 1
,[11] Representation of Markoff's binary quadratic forms by geodesics on a perforated torus, Acta Arith. 18 (1971) 125
,[12] Uber die Markovschen Zahlen, Preuss. Akad. Wiss. Sitzungsberichte (1913) 458
,[13] Trace coordinates of Teichmüller space of Riemann surfaces of signature $(0,4)$, Conform. Geom. Dyn. 9 (2005) 46
, ,[14] The modular group action on real $\mathrm{SL}(2)$–characters of a one-holed torus, Geom. Topol. 7 (2003) 443
,[15] At most 27 length inequalities define Maskit's fundamental domain for the modular group in genus 2, from: "The Epstein birthday schrift", Geom. Topol. Monogr. 1, Geom. Topol. Publ., Coventry (1998) 167
,[16] Diophantine approximation on hyperbolic Riemann surfaces, Acta Math. 156 (1986) 33
,[17] Length functions and parameterizations of Teichmüller space for surfaces with cusps, Ann. Acad. Sci. Fenn. Math. 28 (2003) 75
,[18] The Nielsen realization problem, Ann. of Math. $(2)$ 117 (1983) 235
,[19] A simple proof of the Markoff conjecture for prime powers, Geom. Dedicata 129 (2007) 15
, ,[20] A picture of moduli space, Invent. Math. 126 (1996) 341
,[21] A norm on homology of surfaces and counting simple geodesics, Internat. Math. Res. Notices (1995) 61
, ,[22] Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces, submitted (2003)
,[23] The length spectrum of a Riemann surface is always of unbounded multiplicity, Proc. Amer. Math. Soc. 78 (1980) 455
,[24] Simple curves on surfaces, Geom. Dedicata 87 (2001) 345
,[25] Diophantine problems and linear groups, from: "Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990)", Math. Soc. Japan (1991) 459
,[26] Parametrizing simple closed geodesy on $\Gamma^3\backslash\mathcal H$, J. Aust. Math. Soc. 74 (2003) 43
, ,[27] Systoles of arithmetic surfaces and the Markoff spectrum, Math. Ann. 305 (1996) 191
,[28] Geometry of Riemann surfaces based on closed geodesics, Bull. Amer. Math. Soc. $($N.S.$)$ 35 (1998) 193
,[29] The geometry of Markoff numbers, Math. Intelligencer 7 (1985) 20
,[30] Minimal stretch maps between surfaces
,Cité par Sources :