Equivariant covers for hyperbolic groups
Geometry & topology, Tome 12 (2008) no. 3, pp. 1799-1882.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove an equivariant version of the fact that word-hyperbolic groups have finite asymptotic dimension. This is important in connection with our forthcoming proof of the Farrell–Jones conjecture for K(RG) for every word-hyperbolic group G and every coefficient ring R.

DOI : 10.2140/gt.2008.12.1799
Keywords: equivariant, hyperbolic groups, flow spaces, asymptotic dimension

Bartels, Arthur C 1 ; Lück, Wolfgang 1 ; Reich, Holger 2

1 Westfälische Wilhelms-Universität Münster, Mathematisches Institut, Einsteinstr. 62, D-48149 Münster, Germany
2 Heinrich-Heine-Universität Düsseldorf, Mathematisches Institut, Universitätsstr. 1, D-40225 Düsseldorf, Germany
@article{GT_2008_12_3_a13,
     author = {Bartels, Arthur C and L\"uck, Wolfgang and Reich, Holger},
     title = {Equivariant covers for hyperbolic groups},
     journal = {Geometry & topology},
     pages = {1799--1882},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1799},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1799/}
}
TY  - JOUR
AU  - Bartels, Arthur C
AU  - Lück, Wolfgang
AU  - Reich, Holger
TI  - Equivariant covers for hyperbolic groups
JO  - Geometry & topology
PY  - 2008
SP  - 1799
EP  - 1882
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1799/
DO  - 10.2140/gt.2008.12.1799
ID  - GT_2008_12_3_a13
ER  - 
%0 Journal Article
%A Bartels, Arthur C
%A Lück, Wolfgang
%A Reich, Holger
%T Equivariant covers for hyperbolic groups
%J Geometry & topology
%D 2008
%P 1799-1882
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1799/
%R 10.2140/gt.2008.12.1799
%F GT_2008_12_3_a13
Bartels, Arthur C; Lück, Wolfgang; Reich, Holger. Equivariant covers for hyperbolic groups. Geometry & topology, Tome 12 (2008) no. 3, pp. 1799-1882. doi : 10.2140/gt.2008.12.1799. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1799/

[1] A Bartels, Squeezing and higher algebraic $K$–theory, $K$–Theory 28 (2003) 19

[2] A Bartels, T Farrell, L Jones, H Reich, On the isomorphism conjecture in algebraic $K$–theory, Topology 43 (2004) 157

[3] A Bartels, W. Lück, H. Reich, The $K$–theoretic Farrell–Jones conjecture for hyperbolic groups, to appear in Invent. Math.

[4] A Bartels, D Rosenthal, On the $K$–theory of groups with finite asymptotic dimension, J. Reine Angew. Math. 612 (2007) 35

[5] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften [Fund. Principles of Math. Sciences] 319, Springer (1999)

[6] G Carlsson, B Goldfarb, The integral $K$–theoretic Novikov conjecture for groups with finite asymptotic dimension, Invent. Math. 157 (2004) 405

[7] F T Farrell, L E Jones, $K$–theory and dynamics. I, Ann. of Math. $(2)$ 124 (1986) 531

[8] F T Farrell, L E Jones, Isomorphism conjectures in algebraic $K$–theory, J. Amer. Math. Soc. 6 (1993) 249

[9] E Ghys, P D L Harpe, Editor, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)

[10] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[11] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[12] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser (2007)

[13] W Lück, Transformation groups and algebraic $K$–theory, Lecture Notes in Math. 1408, Springer (1989)

[14] I Mineyev, Flows and joins of metric spaces, Geom. Topol. 9 (2005) 403

[15] J R Munkres, Topology: a first course, Prentice-Hall (1975)

[16] R S Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. $(2)$ 73 (1961) 295

[17] J Roe, Hyperbolic groups have finite asymptotic dimension, Proc. Amer. Math. Soc. 133 (2005) 2489

[18] R. Sauer, Amenable covers, volume and $L^2$–Betti numbers of aspherical manifolds

[19] G Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. $(2)$ 147 (1998) 325

Cité par Sources :