Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove an equivariant version of the fact that word-hyperbolic groups have finite asymptotic dimension. This is important in connection with our forthcoming proof of the Farrell–Jones conjecture for for every word-hyperbolic group and every coefficient ring .
Bartels, Arthur C 1 ; Lück, Wolfgang 1 ; Reich, Holger 2
@article{GT_2008_12_3_a13, author = {Bartels, Arthur C and L\"uck, Wolfgang and Reich, Holger}, title = {Equivariant covers for hyperbolic groups}, journal = {Geometry & topology}, pages = {1799--1882}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1799}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1799/} }
TY - JOUR AU - Bartels, Arthur C AU - Lück, Wolfgang AU - Reich, Holger TI - Equivariant covers for hyperbolic groups JO - Geometry & topology PY - 2008 SP - 1799 EP - 1882 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1799/ DO - 10.2140/gt.2008.12.1799 ID - GT_2008_12_3_a13 ER -
Bartels, Arthur C; Lück, Wolfgang; Reich, Holger. Equivariant covers for hyperbolic groups. Geometry & topology, Tome 12 (2008) no. 3, pp. 1799-1882. doi : 10.2140/gt.2008.12.1799. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1799/
[1] Squeezing and higher algebraic $K$–theory, $K$–Theory 28 (2003) 19
,[2] On the isomorphism conjecture in algebraic $K$–theory, Topology 43 (2004) 157
, , , ,[3] The $K$–theoretic Farrell–Jones conjecture for hyperbolic groups, to appear in Invent. Math.
, , ,[4] On the $K$–theory of groups with finite asymptotic dimension, J. Reine Angew. Math. 612 (2007) 35
, ,[5] Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften [Fund. Principles of Math. Sciences] 319, Springer (1999)
, ,[6] The integral $K$–theoretic Novikov conjecture for groups with finite asymptotic dimension, Invent. Math. 157 (2004) 405
, ,[7] $K$–theory and dynamics. I, Ann. of Math. $(2)$ 124 (1986) 531
, ,[8] Isomorphism conjectures in algebraic $K$–theory, J. Amer. Math. Soc. 6 (1993) 249
, ,[9] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)
, , ,[10] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[11] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[12] Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser (2007)
,[13] Transformation groups and algebraic $K$–theory, Lecture Notes in Math. 1408, Springer (1989)
,[14] Flows and joins of metric spaces, Geom. Topol. 9 (2005) 403
,[15] Topology: a first course, Prentice-Hall (1975)
,[16] On the existence of slices for actions of non-compact Lie groups, Ann. of Math. $(2)$ 73 (1961) 295
,[17] Hyperbolic groups have finite asymptotic dimension, Proc. Amer. Math. Soc. 133 (2005) 2489
,[18] Amenable covers, volume and $L^2$–Betti numbers of aspherical manifolds
,[19] The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. $(2)$ 147 (1998) 325
,Cité par Sources :