Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a combination theorem for trees of (strongly) relatively hyperbolic spaces and finite graphs of (strongly) relatively hyperbolic groups. This gives a geometric extension of Bestvina and Feighn’s Combination Theorem for hyperbolic groups and answers a question of Swarup. We also prove a converse to the main Combination Theorem.
Mj, Mahan 1 ; Reeves, Lawrence 2
@article{GT_2008_12_3_a12, author = {Mj, Mahan and Reeves, Lawrence}, title = {A combination theorem for strong relative hyperbolicity}, journal = {Geometry & topology}, pages = {1777--1798}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1777}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1777/} }
TY - JOUR AU - Mj, Mahan AU - Reeves, Lawrence TI - A combination theorem for strong relative hyperbolicity JO - Geometry & topology PY - 2008 SP - 1777 EP - 1798 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1777/ DO - 10.2140/gt.2008.12.1777 ID - GT_2008_12_3_a12 ER -
Mj, Mahan; Reeves, Lawrence. A combination theorem for strong relative hyperbolicity. Geometry & topology, Tome 12 (2008) no. 3, pp. 1777-1798. doi : 10.2140/gt.2008.12.1777. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1777/
[1] A combination theorem for relatively hyperbolic groups, Bull. London Math. Soc. 37 (2005) 459
,[2] Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity
, , ,[3] Geometric group theory problem list, available at http://math.utah.edu/ bestvina
,[4] A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85
, ,[5] Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215
, , ,[6] Relatively hyperbolic groups, preprint, Southampton (1997)
,[7] The Cannon–Thurston map for punctured-surface groups, Math. Z. 255 (2007) 35
,[8] On definitions of relatively hyperbolic groups, from: "Geometric methods in group theory", Contemp. Math. 372, Amer. Math. Soc. (2005) 189
,[9] Combination of convergence groups, Geom. Topol. 7 (2003) 933
,[10] Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810
,[11] Geodesics in trees of hyperbolic and relatively hyperbolic groups
,[12] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990)
, , ,[13] Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321
, , , ,[14] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[15] Packing subgroups in relatively hyperbolic groups
, ,[16] Hyperbolic manifolds and discrete groups, Progress in Math. 183, Birkhäuser (2001)
,[17] Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999) 1031
,[18] Maps on boundaries of hyperbolic metric spaces, PhD thesis, UC Berkeley (1997)
,[19] Cannon–Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998) 135
,[20] Height in splittings of hyperbolic groups, Proc. Indian Acad. Sci. Math. Sci. 114 (2004) 39
,[21] Cannon–Thurston maps for pared manifolds of bounded geometry
,[22] Cannon–Thurston maps for surface groups I: amalgamation geometry and split geometry
,[23] Cannon–Thurston maps, i-bounded geometry and a theorem of McMullen
,[24] Relative hyperbolicity, trees of spaces and Cannon–Thurston maps
, ,[25] Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996) 305
,[26] A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997) 3447
,[27] Cannon–Thurston maps and relative hyperbolicity, PhD thesis, Indian Statistical Institute, Calcutta (expected 2009)
,[28] Diophantine geometry over groups. I. Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31
,[29] Proof of a weak hyperbolization theorem, Q. J. Math. 51 (2000) 529
,Cité par Sources :