A combination theorem for strong relative hyperbolicity
Geometry & topology, Tome 12 (2008) no. 3, pp. 1777-1798.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a combination theorem for trees of (strongly) relatively hyperbolic spaces and finite graphs of (strongly) relatively hyperbolic groups. This gives a geometric extension of Bestvina and Feighn’s Combination Theorem for hyperbolic groups and answers a question of Swarup. We also prove a converse to the main Combination Theorem.

DOI : 10.2140/gt.2008.12.1777
Keywords: relative hyperbolicity, tree, hyperbolic metric space

Mj, Mahan 1 ; Reeves, Lawrence 2

1 RKM Vivekananda University, Belur Math, WB-711 202, India
2 University of Melbourne, Victoria 3010, Australia
@article{GT_2008_12_3_a12,
     author = {Mj, Mahan and Reeves, Lawrence},
     title = {A combination theorem for strong relative hyperbolicity},
     journal = {Geometry & topology},
     pages = {1777--1798},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1777},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1777/}
}
TY  - JOUR
AU  - Mj, Mahan
AU  - Reeves, Lawrence
TI  - A combination theorem for strong relative hyperbolicity
JO  - Geometry & topology
PY  - 2008
SP  - 1777
EP  - 1798
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1777/
DO  - 10.2140/gt.2008.12.1777
ID  - GT_2008_12_3_a12
ER  - 
%0 Journal Article
%A Mj, Mahan
%A Reeves, Lawrence
%T A combination theorem for strong relative hyperbolicity
%J Geometry & topology
%D 2008
%P 1777-1798
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1777/
%R 10.2140/gt.2008.12.1777
%F GT_2008_12_3_a12
Mj, Mahan; Reeves, Lawrence. A combination theorem for strong relative hyperbolicity. Geometry & topology, Tome 12 (2008) no. 3, pp. 1777-1798. doi : 10.2140/gt.2008.12.1777. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1777/

[1] E Alibegović, A combination theorem for relatively hyperbolic groups, Bull. London Math. Soc. 37 (2005) 459

[2] J Behrstock, C Drutu, L Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity

[3] M Bestvina, Geometric group theory problem list, available at http://math.utah.edu/ bestvina

[4] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[5] M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215

[6] B H Bowditch, Relatively hyperbolic groups, preprint, Southampton (1997)

[7] B H Bowditch, The Cannon–Thurston map for punctured-surface groups, Math. Z. 255 (2007) 35

[8] I Bumagin, On definitions of relatively hyperbolic groups, from: "Geometric methods in group theory", Contemp. Math. 372, Amer. Math. Soc. (2005) 189

[9] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933

[10] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810

[11] F. Gautero, Geodesics in trees of hyperbolic and relatively hyperbolic groups

[12] É Ghys, P D L Harpe, Editor, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990)

[13] R Gitik, M Mitra, E Rips, M Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321

[14] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[15] G Hruska, D Wise, Packing subgroups in relatively hyperbolic groups

[16] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Math. 183, Birkhäuser (2001)

[17] E Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999) 1031

[18] M Mitra, Maps on boundaries of hyperbolic metric spaces, PhD thesis, UC Berkeley (1997)

[19] M Mitra, Cannon–Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998) 135

[20] M Mitra, Height in splittings of hyperbolic groups, Proc. Indian Acad. Sci. Math. Sci. 114 (2004) 39

[21] M Mj, Cannon–Thurston maps for pared manifolds of bounded geometry

[22] M Mj, Cannon–Thurston maps for surface groups I: amalgamation geometry and split geometry

[23] M Mj, Cannon–Thurston maps, i-bounded geometry and a theorem of McMullen

[24] M Mj, A Pal, Relative hyperbolicity, trees of spaces and Cannon–Thurston maps

[25] L Mosher, Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996) 305

[26] L Mosher, A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997) 3447

[27] A Pal, Cannon–Thurston maps and relative hyperbolicity, PhD thesis, Indian Statistical Institute, Calcutta (expected 2009)

[28] Z Sela, Diophantine geometry over groups. I. Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31

[29] G A Swarup, Proof of a weak hyperbolization theorem, Q. J. Math. 51 (2000) 529

Cité par Sources :