Small values of the Lusternik–Schnirelmann category for manifolds
Geometry & topology, Tome 12 (2008) no. 3, pp. 1711-1727.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that manifolds of Lusternik–Schnirelmann category 2 necessarily have free fundamental group. We thus settle a 1992 conjecture of Gomez-Larrañaga and Gonzalez-Acuña by generalizing their result in dimension 3 to all higher dimensions. We also obtain some general results on the relations between the fundamental group of a closed manifold M, the dimension of M and the Lusternik–Schnirelmann category of M, and we relate the latter to the systolic category of M.

DOI : 10.2140/gt.2008.12.1711
Keywords: category weight, cohomological dimension, detecting element, essential manifolds, free fundamental group, Lusternik–Schnirelmann category, systolic category

Dranishnikov, Alexander N 1 ; Katz, Mikhail G 2 ; Rudyak, Yuli B 1

1 Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA
2 Department of Mathematics, Bar Ilan University, Ramat Gan 52900, Israel
@article{GT_2008_12_3_a10,
     author = {Dranishnikov, Alexander N and Katz, Mikhail G and Rudyak, Yuli B},
     title = {Small values of the {Lusternik{\textendash}Schnirelmann} category for manifolds},
     journal = {Geometry & topology},
     pages = {1711--1727},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1711},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1711/}
}
TY  - JOUR
AU  - Dranishnikov, Alexander N
AU  - Katz, Mikhail G
AU  - Rudyak, Yuli B
TI  - Small values of the Lusternik–Schnirelmann category for manifolds
JO  - Geometry & topology
PY  - 2008
SP  - 1711
EP  - 1727
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1711/
DO  - 10.2140/gt.2008.12.1711
ID  - GT_2008_12_3_a10
ER  - 
%0 Journal Article
%A Dranishnikov, Alexander N
%A Katz, Mikhail G
%A Rudyak, Yuli B
%T Small values of the Lusternik–Schnirelmann category for manifolds
%J Geometry & topology
%D 2008
%P 1711-1727
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1711/
%R 10.2140/gt.2008.12.1711
%F GT_2008_12_3_a10
Dranishnikov, Alexander N; Katz, Mikhail G; Rudyak, Yuli B. Small values of the Lusternik–Schnirelmann category for manifolds. Geometry & topology, Tome 12 (2008) no. 3, pp. 1711-1727. doi : 10.2140/gt.2008.12.1711. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1711/

[1] I K Babenko, Asymptotic invariants of smooth manifolds, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992) 707

[2] V Bangert, M Katz, S Shnider, S Weinberger, $E_7$, Wirtinger inequalities, Cayley $4$–form, and homotopy, to appear in Duke Math. J.

[3] I Berstein, On the Lusternik–Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1976) 129

[4] I Berstein, T Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1961/1962) 265

[5] G E Bredon, Sheaf theory, Graduate Texts in Math. 170, Springer (1997)

[6] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)

[7] O Cornea, G Lupton, J Oprea, D Tanré, Lusternik–Schnirelmann category, Math. Surveys and Monographs 103, Amer. Math. Soc. (2003)

[8] A Dranishnikov, On the Lusternik–Schnirelmann category of spaces with $2$–dimensional fundamental group, to appear in Proc. Amer. Math. Soc.

[9] A Dranishnikov, M Katz, Y Rudyak, Small values of the systolic category of manifolds, preprint (2008)

[10] A Dranishnikov, Y Rudyak, On the Berstein–Svarc Theorem in dimension 2, to appear in Math. Proc. Cambridge Phil. Soc.

[11] E Fadell, S Husseini, Category weight and Steenrod operations, Bol. Soc. Mat. Mexicana $(2)$ 37 (1992) 151

[12] A I Fet, A connection between the topological properties and the number of extremals on a manifold, Doklady Akad. Nauk SSSR $($N.S.$)$ 88 (1953) 415

[13] R H Fox, On the Lusternik–Schnirelmann category, Ann. of Math. $(2)$ 42 (1941) 333

[14] J C Gómez-Larrañaga, F González-Acuña, Lusternik–Schnirelmann category of $3$–manifolds, Topology 31 (1992) 791

[15] M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1

[16] M Gromov, Systoles and intersystolic inequalities, from: "Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992)", Sémin. Congr. 1, Soc. Math. France (1996) 291

[17] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhäuser (1999)

[18] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser (2007)

[19] K A Hardie, On the category of the double mapping cylinder, Tôhoku Math. J. $(2)$ 25 (1973) 355

[20] A Hatcher, Algebraic topology, Cambridge University Press (2002)

[21] J A Hillman, $\mathrm{PD}_4$–complexes with free fundamental group, Hiroshima Math. J. 34 (2004) 295

[22] M Katz, Systolic geometry and topology, Math. Surveys and Monographs 137, Amer. Math. Soc. (2007)

[23] M Katz, Y Rudyak, Bounding volume by systoles of $3$–manifolds, to appear in J. London. Math. Soc.

[24] M Katz, Y Rudyak, Lusternik–Schnirelmann category and systolic category of low-dimensional manifolds, Comm. Pure Appl. Math. 59 (2006) 1433

[25] M Katz, Y Rudyak, S Sabourau, Systoles of $2$–complexes, Reeb graph, and Grushko decomposition, Int. Math. Res. Not. (2006) 30

[26] M Katz, S Shnider, Cayley $4$–form comass and triality isomorphisms, to appear Israel J. Math.

[27] T Matumoto, A Katanaga, On $4$–dimensional closed manifolds with free fundamental groups, Hiroshima Math. J. 25 (1995) 367

[28] J Oprea, Y Rudyak, Detecting elements and Lusternik–Schnirelmann category of $3$–manifolds, from: "Lusternik–Schnirelmann category and related topics (South Hadley, MA, 2001)", Contemp. Math. 316, Amer. Math. Soc. (2002) 181

[29] Y Rudyak, Category weight: new ideas concerning Lusternik–Schnirelmann category, from: "Homotopy and geometry (Warsaw, 1997)", Banach Center Publ. 45, Polish Acad. Sci. (1998) 47

[30] Y Rudyak, On category weight and its applications, Topology 38 (1999) 37

[31] E H Spanier, Algebraic topology, McGraw-Hill Book Co. (1966)

[32] J Stallings, Groups of dimension 1 are locally free, Bull. Amer. Math. Soc. 74 (1968) 361

[33] J Strom, Category weight and essential category weight, PhD thesis, Univ. of Wisconsin (1997)

[34] J Strom, Lusternik–Schnirelmann category of spaces with free fundamental group, Algebr. Geom. Topol. 7 (2007) 1805

[35] R G Swan, Groups of cohomological dimension one, J. Algebra 12 (1969) 585

[36] A Švarc, The genus of a fiber space, Amer. Math. Soc. Transl. Ser. 2 55 (1966) 49

[37] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)

Cité par Sources :