Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that manifolds of Lusternik–Schnirelmann category necessarily have free fundamental group. We thus settle a 1992 conjecture of Gomez-Larrañaga and Gonzalez-Acuña by generalizing their result in dimension to all higher dimensions. We also obtain some general results on the relations between the fundamental group of a closed manifold , the dimension of and the Lusternik–Schnirelmann category of , and we relate the latter to the systolic category of .
Dranishnikov, Alexander N 1 ; Katz, Mikhail G 2 ; Rudyak, Yuli B 1
@article{GT_2008_12_3_a10, author = {Dranishnikov, Alexander N and Katz, Mikhail G and Rudyak, Yuli B}, title = {Small values of the {Lusternik{\textendash}Schnirelmann} category for manifolds}, journal = {Geometry & topology}, pages = {1711--1727}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1711}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1711/} }
TY - JOUR AU - Dranishnikov, Alexander N AU - Katz, Mikhail G AU - Rudyak, Yuli B TI - Small values of the Lusternik–Schnirelmann category for manifolds JO - Geometry & topology PY - 2008 SP - 1711 EP - 1727 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1711/ DO - 10.2140/gt.2008.12.1711 ID - GT_2008_12_3_a10 ER -
%0 Journal Article %A Dranishnikov, Alexander N %A Katz, Mikhail G %A Rudyak, Yuli B %T Small values of the Lusternik–Schnirelmann category for manifolds %J Geometry & topology %D 2008 %P 1711-1727 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1711/ %R 10.2140/gt.2008.12.1711 %F GT_2008_12_3_a10
Dranishnikov, Alexander N; Katz, Mikhail G; Rudyak, Yuli B. Small values of the Lusternik–Schnirelmann category for manifolds. Geometry & topology, Tome 12 (2008) no. 3, pp. 1711-1727. doi : 10.2140/gt.2008.12.1711. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1711/
[1] Asymptotic invariants of smooth manifolds, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992) 707
,[2] $E_7$, Wirtinger inequalities, Cayley $4$–form, and homotopy, to appear in Duke Math. J.
, , , ,[3] On the Lusternik–Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1976) 129
,[4] The category of a map and of a cohomology class, Fund. Math. 50 (1961/1962) 265
, ,[5] Sheaf theory, Graduate Texts in Math. 170, Springer (1997)
,[6] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)
,[7] Lusternik–Schnirelmann category, Math. Surveys and Monographs 103, Amer. Math. Soc. (2003)
, , , ,[8] On the Lusternik–Schnirelmann category of spaces with $2$–dimensional fundamental group, to appear in Proc. Amer. Math. Soc.
,[9] Small values of the systolic category of manifolds, preprint (2008)
, , ,[10] On the Berstein–Svarc Theorem in dimension 2, to appear in Math. Proc. Cambridge Phil. Soc.
, ,[11] Category weight and Steenrod operations, Bol. Soc. Mat. Mexicana $(2)$ 37 (1992) 151
, ,[12] A connection between the topological properties and the number of extremals on a manifold, Doklady Akad. Nauk SSSR $($N.S.$)$ 88 (1953) 415
,[13] On the Lusternik–Schnirelmann category, Ann. of Math. $(2)$ 42 (1941) 333
,[14] Lusternik–Schnirelmann category of $3$–manifolds, Topology 31 (1992) 791
, ,[15] Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1
,[16] Systoles and intersystolic inequalities, from: "Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992)", Sémin. Congr. 1, Soc. Math. France (1996) 291
,[17] Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhäuser (1999)
,[18] Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser (2007)
,[19] On the category of the double mapping cylinder, Tôhoku Math. J. $(2)$ 25 (1973) 355
,[20] Algebraic topology, Cambridge University Press (2002)
,[21] $\mathrm{PD}_4$–complexes with free fundamental group, Hiroshima Math. J. 34 (2004) 295
,[22] Systolic geometry and topology, Math. Surveys and Monographs 137, Amer. Math. Soc. (2007)
,[23] Bounding volume by systoles of $3$–manifolds, to appear in J. London. Math. Soc.
, ,[24] Lusternik–Schnirelmann category and systolic category of low-dimensional manifolds, Comm. Pure Appl. Math. 59 (2006) 1433
, ,[25] Systoles of $2$–complexes, Reeb graph, and Grushko decomposition, Int. Math. Res. Not. (2006) 30
, , ,[26] Cayley $4$–form comass and triality isomorphisms, to appear Israel J. Math.
, ,[27] On $4$–dimensional closed manifolds with free fundamental groups, Hiroshima Math. J. 25 (1995) 367
, ,[28] Detecting elements and Lusternik–Schnirelmann category of $3$–manifolds, from: "Lusternik–Schnirelmann category and related topics (South Hadley, MA, 2001)", Contemp. Math. 316, Amer. Math. Soc. (2002) 181
, ,[29] Category weight: new ideas concerning Lusternik–Schnirelmann category, from: "Homotopy and geometry (Warsaw, 1997)", Banach Center Publ. 45, Polish Acad. Sci. (1998) 47
,[30] On category weight and its applications, Topology 38 (1999) 37
,[31] Algebraic topology, McGraw-Hill Book Co. (1966)
,[32] Groups of dimension 1 are locally free, Bull. Amer. Math. Soc. 74 (1968) 361
,[33] Category weight and essential category weight, PhD thesis, Univ. of Wisconsin (1997)
,[34] Lusternik–Schnirelmann category of spaces with free fundamental group, Algebr. Geom. Topol. 7 (2007) 1805
,[35] Groups of cohomological dimension one, J. Algebra 12 (1969) 585
,[36] The genus of a fiber space, Amer. Math. Soc. Transl. Ser. 2 55 (1966) 49
,[37] Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)
,Cité par Sources :