Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We determine the abstract commensurator of Thompson’s group and describe it in terms of piecewise linear homeomorphisms of the real line. We show is not finitely generated and determine which subgroups of finite index in are isomorphic to . We also show that the natural map from the commensurator group to the quasi-isometry group of is injective.
Burillo, José 1 ; Cleary, Sean 2 ; Röver, Claas E 3
@article{GT_2008_12_3_a9, author = {Burillo, Jos\'e and Cleary, Sean and R\"over, Claas E}, title = {Commensurations and subgroups of finite index of {Thompson{\textquoteright}s} group {F}}, journal = {Geometry & topology}, pages = {1701--1709}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1701}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1701/} }
TY - JOUR AU - Burillo, José AU - Cleary, Sean AU - Röver, Claas E TI - Commensurations and subgroups of finite index of Thompson’s group F JO - Geometry & topology PY - 2008 SP - 1701 EP - 1709 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1701/ DO - 10.2140/gt.2008.12.1701 ID - GT_2008_12_3_a9 ER -
%0 Journal Article %A Burillo, José %A Cleary, Sean %A Röver, Claas E %T Commensurations and subgroups of finite index of Thompson’s group F %J Geometry & topology %D 2008 %P 1701-1709 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1701/ %R 10.2140/gt.2008.12.1701 %F GT_2008_12_3_a9
Burillo, José; Cleary, Sean; Röver, Claas E. Commensurations and subgroups of finite index of Thompson’s group F. Geometry & topology, Tome 12 (2008) no. 3, pp. 1701-1709. doi : 10.2140/gt.2008.12.1701. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1701/
[1] Finite index subgroups of R Thompson's group $F$
, ,[2] The chameleon groups of Richard J Thompson: automorphisms and dynamics, Inst. Hautes Études Sci. Publ. Math. (1996)
,[3] An infinite-dimensional torsion-free $\mathrm{FP}_{\infty }$ group, Invent. Math. 77 (1984) 367
, ,[4] Introductory notes on Richard Thompson's groups, Enseign. Math. $(2)$ 42 (1996) 215
, , ,[5] Geometric quasi-isometric embeddings into Thompson's group $F$, New York J. Math. 9 (2003) 141
, ,[6] Locally moving groups and the reconstruction problem for chains and circles
, ,[7] Embeddings into finitely generated simple groups which preserve the word problem, from: "Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976)", Stud. Logic Foundations Math. 95, North-Holland (1980) 401
,Cité par Sources :