Commensurations and subgroups of finite index of Thompson’s group F
Geometry & topology, Tome 12 (2008) no. 3, pp. 1701-1709.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We determine the abstract commensurator Com(F) of Thompson’s group F and describe it in terms of piecewise linear homeomorphisms of the real line. We show Com(F) is not finitely generated and determine which subgroups of finite index in F are isomorphic to F. We also show that the natural map from the commensurator group to the quasi-isometry group of F is injective.

DOI : 10.2140/gt.2008.12.1701
Keywords: Thompson group, commensurator

Burillo, José 1 ; Cleary, Sean 2 ; Röver, Claas E 3

1 Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Escola Politècnica Superior de Castelldefels, Avda. Del Canal Olímpic 15, 08860 Castelldefels (Barcelona), Spain
2 Department of Mathematics R8133, The City College of New York, Convent Ave & 138th, New York, NY 10031, USA
3 Department of Mathematics, University of Ireland, Galway, University Road, Galway, Ireland
@article{GT_2008_12_3_a9,
     author = {Burillo, Jos\'e and Cleary, Sean and R\"over, Claas E},
     title = {Commensurations and subgroups of finite index of {Thompson{\textquoteright}s} group {F}},
     journal = {Geometry & topology},
     pages = {1701--1709},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1701},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1701/}
}
TY  - JOUR
AU  - Burillo, José
AU  - Cleary, Sean
AU  - Röver, Claas E
TI  - Commensurations and subgroups of finite index of Thompson’s group F
JO  - Geometry & topology
PY  - 2008
SP  - 1701
EP  - 1709
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1701/
DO  - 10.2140/gt.2008.12.1701
ID  - GT_2008_12_3_a9
ER  - 
%0 Journal Article
%A Burillo, José
%A Cleary, Sean
%A Röver, Claas E
%T Commensurations and subgroups of finite index of Thompson’s group F
%J Geometry & topology
%D 2008
%P 1701-1709
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1701/
%R 10.2140/gt.2008.12.1701
%F GT_2008_12_3_a9
Burillo, José; Cleary, Sean; Röver, Claas E. Commensurations and subgroups of finite index of Thompson’s group F. Geometry & topology, Tome 12 (2008) no. 3, pp. 1701-1709. doi : 10.2140/gt.2008.12.1701. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1701/

[1] C Bleak, B Wassink, Finite index subgroups of R Thompson's group $F$

[2] M G Brin, The chameleon groups of Richard J Thompson: automorphisms and dynamics, Inst. Hautes Études Sci. Publ. Math. (1996)

[3] K S Brown, R Geoghegan, An infinite-dimensional torsion-free $\mathrm{FP}_{\infty }$ group, Invent. Math. 77 (1984) 367

[4] J W Cannon, W J Floyd, W R Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. $(2)$ 42 (1996) 215

[5] S Cleary, J Taback, Geometric quasi-isometric embeddings into Thompson's group $F$, New York J. Math. 9 (2003) 141

[6] S Mccleary, M Rubin, Locally moving groups and the reconstruction problem for chains and circles

[7] R J Thompson, Embeddings into finitely generated simple groups which preserve the word problem, from: "Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976)", Stud. Logic Foundations Math. 95, North-Holland (1980) 401

Cité par Sources :