Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study atomic right-angled Artin groups – those whose defining graph has no cycles of length , and no separating vertices, separating edges, or separating vertex stars. We show that these groups are not quasi-isometrically rigid, but that an intermediate form of rigidity does hold. We deduce from this that two atomic groups are quasi-isometric iff they are isomorphic.
Bestvina, Mladen 1 ; Kleiner, Bruce 2 ; Sageev, Michah 3
@article{GT_2008_12_3_a8, author = {Bestvina, Mladen and Kleiner, Bruce and Sageev, Michah}, title = {The asymptotic geometry of right-angled {Artin} groups, {I}}, journal = {Geometry & topology}, pages = {1653--1699}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1653}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1653/} }
TY - JOUR AU - Bestvina, Mladen AU - Kleiner, Bruce AU - Sageev, Michah TI - The asymptotic geometry of right-angled Artin groups, I JO - Geometry & topology PY - 2008 SP - 1653 EP - 1699 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1653/ DO - 10.2140/gt.2008.12.1653 ID - GT_2008_12_3_a8 ER -
%0 Journal Article %A Bestvina, Mladen %A Kleiner, Bruce %A Sageev, Michah %T The asymptotic geometry of right-angled Artin groups, I %J Geometry & topology %D 2008 %P 1653-1699 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1653/ %R 10.2140/gt.2008.12.1653 %F GT_2008_12_3_a8
Bestvina, Mladen; Kleiner, Bruce; Sageev, Michah. The asymptotic geometry of right-angled Artin groups, I. Geometry & topology, Tome 12 (2008) no. 3, pp. 1653-1699. doi : 10.2140/gt.2008.12.1653. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1653/
[1] The large scale geometry of products of trees, Geom. Dedicata 92 (2002) 179
,[2] The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. $(3)$ 25 (1972) 603
,[3] Quasi-isometric classification of graph manifold groups
, ,[4] Quasiflats in $\mathrm{CAT}(0)$ $2$–complexes
, , ,[5] Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. (2000)
, ,[6] An introduction to right angled Artin groups
,[7] Automorphisms of two-dimensional right-angled artin groups
, , ,[8] The $K(\pi,1)$–problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995) 597
, ,[9] Buildings are $\mathrm{CAT}(0)$, from: "Geometry and cohomology in group theory (Durham, 1994)", London Math. Soc. Lecture Note Ser. 252, Cambridge Univ. Press (1998) 108
,[10] Right-angled Artin groups are commensurable with right-angled Coxeter groups, J. Pure Appl. Algebra 153 (2000) 229
, ,[11] Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100 (1987) 407
,[12] The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449
,[13] Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981) 53
,[14] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[15] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[16] Higher generation subgroup sets and the virtual cohomological dimension of graph products of finite groups, J. London Math. Soc. $(2)$ 53 (1996) 99
, ,[17] Quasi-isometries and the de Rham decomposition, Topology 37 (1998) 1193
, , ,[18] Quasi-isometries preserve the geometric decomposition of Haken manifolds, Invent. Math. 128 (1997) 393
, ,[19] Finite and infinite cyclic extensions of free groups, J. Austral. Math. Soc. 16 (1973) 458
, , ,[20] Graph algebras, J. Algebra 64 (1980) 46
, , , ,[21] Induced quasi-actions: a remark, preprint (2007)
, ,[22] A generating set for the automorphism group of a graph group, J. London Math. Soc. $(2)$ 52 (1995) 318
,[23] Fans and ladders in small cancellation theory, Proc. London Math. Soc. $(3)$ 84 (2002) 599
, ,[24] Quasi-actions on trees. I. Bounded valence, Ann. of Math. $(2)$ 158 (2003) 115
, , ,[25] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. $(3)$ 71 (1995) 585
,[26] Automorphisms of graph groups, J. Algebra 126 (1989) 34
,[27] On torsion-free groups with infinitely many ends, Ann. of Math. $(2)$ 88 (1968) 312
,[28] Non-positively curved squared complexes, aperiodic tilings, and non-residually finite groups, PhD thesis, Princeton (1996)
,Cité par Sources :