Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give formulae for the Ozsváth–Szabó invariants of –manifolds obtained by fiber sum of two manifolds , along surfaces , having trivial normal bundle and genus . The formulae follow from a general theorem on the Ozsváth–Szabó invariants of the result of gluing two –manifolds along a common boundary, which is phrased in terms of relative invariants of the pieces. These relative invariants take values in a version of Heegaard Floer homology with coefficients in modules over certain Novikov rings; the fiber sum formula follows from the theorem that this “perturbed” version of Heegaard Floer theory recovers the usual Ozsváth–Szabó invariants, when the –manifold in question has . The construction allows an extension of the definition of Ozsváth–Szabó invariants to –manifolds having depending on certain choices, in close analogy with Seiberg–Witten theory. The product formulae lead quickly to calculations of the Ozsváth–Szabó invariants of various –manifolds; in all cases the results are in accord with the conjectured equivalence between Ozsváth–Szabó and Seiberg–Witten invariants.
Jabuka, Stanislav 1 ; Mark, Thomas E 2
@article{GT_2008_12_3_a7, author = {Jabuka, Stanislav and Mark, Thomas E}, title = {Product formulae for {Ozsv\'ath{\textendash}Szab\'o} 4{\textendash}manifold invariants}, journal = {Geometry & topology}, pages = {1557--1651}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1557}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1557/} }
TY - JOUR AU - Jabuka, Stanislav AU - Mark, Thomas E TI - Product formulae for Ozsváth–Szabó 4–manifold invariants JO - Geometry & topology PY - 2008 SP - 1557 EP - 1651 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1557/ DO - 10.2140/gt.2008.12.1557 ID - GT_2008_12_3_a7 ER -
Jabuka, Stanislav; Mark, Thomas E. Product formulae for Ozsváth–Szabó 4–manifold invariants. Geometry & topology, Tome 12 (2008) no. 3, pp. 1557-1651. doi : 10.2140/gt.2008.12.1557. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1557/
[1] Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer (1995)
,[2] $4$–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc. (1999)
, ,[3] Heegaard Floer homology of a surfaces times a circle, Adv. Math. 218 (2008) 728
, ,[4] Monopoles and three-manifolds, New Mathematical Monographs 10, Cambridge Univ. Press (2007)
, ,[5] General wall crossing formula, Math. Res. Lett. 2 (1995) 797
, ,[6] Knotted surfaces in $4$–manifolds
,[7] Product formulas along $T^3$ for Seiberg–Witten invariants, Math. Res. Lett. 4 (1997) 915
, , ,[8] A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706
, , ,[9] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179
, ,[10] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58
, ,[11] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159
, ,[12] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027
, ,[13] Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1
, ,[14] Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39
, ,[15] Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326
, ,[16] An introduction to Heegaard Floer homology, from: "Floer homology, gauge theory, and low-dimensional topology", Clay Math. Proc. 5, Amer. Math. Soc. (2006) 3
, ,[17] A gluing formula for the Seiberg–Witten invariant along $T^3$, Michigan Math. J. 50 (2002) 593
,[18] Floer homology of surgeries on two-bridge knots, Algebr. Geom. Topol. 2 (2002) 757
,[19] Will we ever classify simply-connected smooth $4$–manifolds?, from: "Floer homology, gauge theory, and low-dimensional topology", Clay Math. Proc. 5, Amer. Math. Soc. (2006) 225
,[20] $\mathrm{GR}=\mathrm{SW}$: counting curves and connections, J. Differential Geom. 52 (1999) 453
,[21] The Seiberg–Witten invariants and $4$–manifolds with essential tori, Geom. Topol. 5 (2001) 441
,[22] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769
,Cité par Sources :