Minimality of the well-rounded retract
Geometry & topology, Tome 12 (2008) no. 3, pp. 1543-1556.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the well-rounded retract of SOnSLn is a minimal SLn–invariant spine.

DOI : 10.2140/gt.2008.12.1543
Keywords: well-rounded retract, symmetric space, systole, deformation retract, lattice

Pettet, Alexandra 1 ; Souto, Juan 2

1 Department of Mathematics, Stanford University, Stanford, California 94305, USA
2 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA
@article{GT_2008_12_3_a6,
     author = {Pettet, Alexandra and Souto, Juan},
     title = {Minimality of the well-rounded retract},
     journal = {Geometry & topology},
     pages = {1543--1556},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1543},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1543/}
}
TY  - JOUR
AU  - Pettet, Alexandra
AU  - Souto, Juan
TI  - Minimality of the well-rounded retract
JO  - Geometry & topology
PY  - 2008
SP  - 1543
EP  - 1556
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1543/
DO  - 10.2140/gt.2008.12.1543
ID  - GT_2008_12_3_a6
ER  - 
%0 Journal Article
%A Pettet, Alexandra
%A Souto, Juan
%T Minimality of the well-rounded retract
%J Geometry & topology
%D 2008
%P 1543-1556
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1543/
%R 10.2140/gt.2008.12.1543
%F GT_2008_12_3_a6
Pettet, Alexandra; Souto, Juan. Minimality of the well-rounded retract. Geometry & topology, Tome 12 (2008) no. 3, pp. 1543-1556. doi : 10.2140/gt.2008.12.1543. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1543/

[1] H Akrout, Singularités topologiques des systoles généralisées, Topology 42 (2003) 291

[2] A Ash, On eutactic forms, Canad. J. Math. 29 (1977) 1040

[3] A Ash, Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J. 51 (1984) 459

[4] C Bavard, Systole et invariant d'Hermite, J. Reine Angew. Math. 482 (1997) 93

[5] A Borel, J P Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436

[6] J Martinet, Perfect lattices in Euclidean spaces, Grundlehren series 327, Springer (2003)

[7] A Pettet, J Souto, The spine that was no spine, to appear in Enseign. Math.

[8] C Soulé, The cohomology of $\mathrm{SL}_{3}(\mathbb{Z})$, Topology 17 (1978) 1

Cité par Sources :