Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the well-rounded retract of is a minimal –invariant spine.
Pettet, Alexandra 1 ; Souto, Juan 2
@article{GT_2008_12_3_a6, author = {Pettet, Alexandra and Souto, Juan}, title = {Minimality of the well-rounded retract}, journal = {Geometry & topology}, pages = {1543--1556}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1543}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1543/} }
Pettet, Alexandra; Souto, Juan. Minimality of the well-rounded retract. Geometry & topology, Tome 12 (2008) no. 3, pp. 1543-1556. doi : 10.2140/gt.2008.12.1543. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1543/
[1] Singularités topologiques des systoles généralisées, Topology 42 (2003) 291
,[2] On eutactic forms, Canad. J. Math. 29 (1977) 1040
,[3] Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J. 51 (1984) 459
,[4] Systole et invariant d'Hermite, J. Reine Angew. Math. 482 (1997) 93
,[5] Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436
, ,[6] Perfect lattices in Euclidean spaces, Grundlehren series 327, Springer (2003)
,[7] The spine that was no spine, to appear in Enseign. Math.
, ,[8] The cohomology of $\mathrm{SL}_{3}(\mathbb{Z})$, Topology 17 (1978) 1
,Cité par Sources :