Lagrangian matching invariants for fibred four-manifolds: II
Geometry & topology, Tome 12 (2008) no. 3, pp. 1461-1542.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In the second of a pair of papers, we complete our geometric construction of “Lagrangian matching invariants” for smooth four-manifolds equipped with broken fibrations. We prove an index formula, a vanishing theorem for connected sums and an analogue of the Meng–Taubes formula. These results lend support to the conjecture that the invariants coincide with Seiberg–Witten invariants of the underlying four-manifold, and are in particular independent of the broken fibration.

DOI : 10.2140/gt.2008.12.1461
Keywords: four-manifold, Lefschetz fibration, Seiberg–Witten invariant, pseudo-holomorphic curve, Lagrangian correspondence

Perutz, Tim 1

1 DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK, Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA
@article{GT_2008_12_3_a5,
     author = {Perutz, Tim},
     title = {Lagrangian matching invariants for fibred four-manifolds: {II}},
     journal = {Geometry & topology},
     pages = {1461--1542},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1461},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1461/}
}
TY  - JOUR
AU  - Perutz, Tim
TI  - Lagrangian matching invariants for fibred four-manifolds: II
JO  - Geometry & topology
PY  - 2008
SP  - 1461
EP  - 1542
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1461/
DO  - 10.2140/gt.2008.12.1461
ID  - GT_2008_12_3_a5
ER  - 
%0 Journal Article
%A Perutz, Tim
%T Lagrangian matching invariants for fibred four-manifolds: II
%J Geometry & topology
%D 2008
%P 1461-1542
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1461/
%R 10.2140/gt.2008.12.1461
%F GT_2008_12_3_a5
Perutz, Tim. Lagrangian matching invariants for fibred four-manifolds: II. Geometry & topology, Tome 12 (2008) no. 3, pp. 1461-1542. doi : 10.2140/gt.2008.12.1461. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1461/

[1] D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043

[2] A Bertram, M Thaddeus, On the quantum cohomology of a symmetric product of an algebraic curve, Duke Math. J. 108 (2001) 329

[3] R Bott, The stable homotopy of the classical groups, Ann. of Math. $(2)$ 70 (1959) 313

[4] S K Donaldson, Topological field theories and formulae of Casson and Meng–Taubes, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2 (1999) 87

[5] S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)

[6] S Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743

[7] C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969) 19

[8] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[9] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775

[10] A Floer, H Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993) 13

[11] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[12] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: anomaly and obstruction, book manuscript (2000)

[13] R E Gompf, The topology of symplectic manifolds, Turkish J. Math. 25 (2001) 43

[14] F Hirzebruch, H Hopf, Felder von Flächenelementen in $4$–dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958) 156

[15] H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 483

[16] P Kronheimer, T Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209

[17] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457

[18] L Lazzarini, Existence of a somewhere injective pseudo-holomorphic disc, Geom. Funct. Anal. 10 (2000) 829

[19] Y J Lee, Heegaard splittings and Seiberg–Witten monopoles, from: "Geometry and topology of manifolds", Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 173

[20] Y J Lee, Reidemeister torsion in Floer–Novikov theory and counting pseudo-holomorphic tori. I, J. Symplectic Geom. 3 (2005) 221

[21] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Colloquium Publ. 52, Amer. Math. Soc. (2004)

[22] J Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965) 286

[23] T Perutz, Surface-fibrations, four-manifolds, and symplectic Floer homology, PhD thesis, Imperial College London (2005)

[24] T Perutz, Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007) 759

[25] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[26] L Pontrjagin, A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941) 331

[27] M Poźniak, Floer homology, Novikov rings and clean intersections, PhD thesis, University of Warwick (1994)

[28] D A Salamon, Seiberg-Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, from: "Proceedings of 6th Gökova Geometry-Topology Conference", Turkish J. Math. 23 (1999) 117

[29] M Schwarz, Cohomology operations from $S^1$–cobordisms in Floer homology, PhD thesis, ETH-Zürich (1995)

[30] G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 421

[31] P Seidel, The symplectic Floer homology of a Dehn twist, Math. Res. Lett. 3 (1996) 829

[32] P Seidel, Floer homology and the symplectic isotopy problem, PhD thesis, University of Oxford (1997)

[33] P Seidel, Symplectic Floer homology and the mapping class group, Pacific J. Math. 206 (2002) 219

[34] P Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003

[35] P Seidel, Fukaya categories and Picard–Lefschetz theory, book manuscript available at http://www-math.mit.edu/ seidel (2006)

[36] V De Silva, Products in the symplectic Floer homology of Lagrangian intersections, PhD thesis, University of Oxford (1999)

[37] I Smith, Serre–Taubes duality for pseudoholomorphic curves, Topology 42 (2003) 931

[38] C H Taubes, Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic $2$–forms, Geom. Topol. 3 (1999) 167

[39] M Usher, Vortices and a TQFT for Lefschetz fibrations on $4$–manifolds, Algebr. Geom. Topol. 6 (2006) 1677

[40] R Ye, Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671

Cité par Sources :