Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In the second of a pair of papers, we complete our geometric construction of “Lagrangian matching invariants” for smooth four-manifolds equipped with broken fibrations. We prove an index formula, a vanishing theorem for connected sums and an analogue of the Meng–Taubes formula. These results lend support to the conjecture that the invariants coincide with Seiberg–Witten invariants of the underlying four-manifold, and are in particular independent of the broken fibration.
Perutz, Tim 1
@article{GT_2008_12_3_a5, author = {Perutz, Tim}, title = {Lagrangian matching invariants for fibred four-manifolds: {II}}, journal = {Geometry & topology}, pages = {1461--1542}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1461}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1461/} }
Perutz, Tim. Lagrangian matching invariants for fibred four-manifolds: II. Geometry & topology, Tome 12 (2008) no. 3, pp. 1461-1542. doi : 10.2140/gt.2008.12.1461. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1461/
[1] Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043
, , ,[2] On the quantum cohomology of a symmetric product of an algebraic curve, Duke Math. J. 108 (2001) 329
, ,[3] The stable homotopy of the classical groups, Ann. of Math. $(2)$ 70 (1959) 313
,[4] Topological field theories and formulae of Casson and Meng–Taubes, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2 (1999) 87
,[5] Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)
,[6] Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743
, ,[7] A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969) 19
, ,[8] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[9] The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775
,[10] Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993) 13
, ,[11] Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251
, , ,[12] Lagrangian intersection Floer theory: anomaly and obstruction, book manuscript (2000)
, , , ,[13] The topology of symplectic manifolds, Turkish J. Math. 25 (2001) 43
,[14] Felder von Flächenelementen in $4$–dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958) 156
, ,[15] Floer homology and Novikov rings, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 483
, ,[16] Monopoles and contact structures, Invent. Math. 130 (1997) 209
, ,[17] Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457
, , , ,[18] Existence of a somewhere injective pseudo-holomorphic disc, Geom. Funct. Anal. 10 (2000) 829
,[19] Heegaard splittings and Seiberg–Witten monopoles, from: "Geometry and topology of manifolds", Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 173
,[20] Reidemeister torsion in Floer–Novikov theory and counting pseudo-holomorphic tori. I, J. Symplectic Geom. 3 (2005) 221
,[21] $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Colloquium Publ. 52, Amer. Math. Soc. (2004)
, ,[22] On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965) 286
,[23] Surface-fibrations, four-manifolds, and symplectic Floer homology, PhD thesis, Imperial College London (2005)
,[24] Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007) 759
,[25] Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171
, , ,[26] A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941) 331
,[27] Floer homology, Novikov rings and clean intersections, PhD thesis, University of Warwick (1994)
,[28] Seiberg-Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, from: "Proceedings of 6th Gökova Geometry-Topology Conference", Turkish J. Math. 23 (1999) 117
,[29] Cohomology operations from $S^1$–cobordisms in Floer homology, PhD thesis, ETH-Zürich (1995)
,[30] The definition of conformal field theory, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 421
,[31] The symplectic Floer homology of a Dehn twist, Math. Res. Lett. 3 (1996) 829
,[32] Floer homology and the symplectic isotopy problem, PhD thesis, University of Oxford (1997)
,[33] Symplectic Floer homology and the mapping class group, Pacific J. Math. 206 (2002) 219
,[34] A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003
,[35] Fukaya categories and Picard–Lefschetz theory, book manuscript available at http://www-math.mit.edu/ seidel (2006)
,[36] Products in the symplectic Floer homology of Lagrangian intersections, PhD thesis, University of Oxford (1999)
,[37] Serre–Taubes duality for pseudoholomorphic curves, Topology 42 (2003) 931
,[38] Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic $2$–forms, Geom. Topol. 3 (1999) 167
,[39] Vortices and a TQFT for Lefschetz fibrations on $4$–manifolds, Algebr. Geom. Topol. 6 (2006) 1677
,[40] Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671
,Cité par Sources :