Automorphisms of p–compact groups and their root data
Geometry & topology, Tome 12 (2008) no. 3, pp. 1427-1460.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a model for the space of automorphisms of a connected p–compact group in terms of the space of automorphisms of its maximal torus normalizer and its root datum. As a consequence we show that any homomorphism to the outer automorphism group of a p–compact group can be lifted to a group action, analogous to a classical theorem of de Siebenthal for compact Lie groups. The model of this paper is used in a crucial way in our paper ‘The classification of 2-compact groups’ [arXiv:math.AT/0611437], where we prove the conjectured classification of 2–compact groups and determine their automorphism spaces.

DOI : 10.2140/gt.2008.12.1427
Keywords: $p$-compact group, root datum, maximal torus normalizer

Andersen, Kasper K S 1 ; Grodal, Jesper 2

1 Department of Mathematical Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
2 Department of Mathematical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
@article{GT_2008_12_3_a4,
     author = {Andersen, Kasper K S and Grodal, Jesper},
     title = {Automorphisms of p{\textendash}compact groups and their root data},
     journal = {Geometry & topology},
     pages = {1427--1460},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1427},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1427/}
}
TY  - JOUR
AU  - Andersen, Kasper K S
AU  - Grodal, Jesper
TI  - Automorphisms of p–compact groups and their root data
JO  - Geometry & topology
PY  - 2008
SP  - 1427
EP  - 1460
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1427/
DO  - 10.2140/gt.2008.12.1427
ID  - GT_2008_12_3_a4
ER  - 
%0 Journal Article
%A Andersen, Kasper K S
%A Grodal, Jesper
%T Automorphisms of p–compact groups and their root data
%J Geometry & topology
%D 2008
%P 1427-1460
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1427/
%R 10.2140/gt.2008.12.1427
%F GT_2008_12_3_a4
Andersen, Kasper K S; Grodal, Jesper. Automorphisms of p–compact groups and their root data. Geometry & topology, Tome 12 (2008) no. 3, pp. 1427-1460. doi : 10.2140/gt.2008.12.1427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1427/

[1] K K S Andersen, The normalizer splitting conjecture for $p$–compact groups, from: "Algebraic Topology. Proceedings of the 4th Conference held in Kazimierz Dolny, June 12–19, 1997" (editors W Dwyer, S Jackowski), Fund. Math. 161 (1999) 1

[2] K K S Andersen, J Grodal, The classification of $2$–compact groups

[3] K K S Andersen, J Grodal, J M Møller, A Viruel, The classification of $p$–compact groups for $p$ odd, Ann. of Math. $(2)$ 167 (2008) 95

[4] T Bauer, N Kitchloo, D Notbohm, E K Pedersen, Finite loop spaces are manifolds, Acta Math. 192 (2004) 5

[5] G W Bell, On the cohomology of the finite special linear groups. I, II, J. Algebra 54 (1978) 216, 239

[6] D Benson, Modular representation theory: new trends and methods, Lecture Notes in Math. 1081, Springer (1984)

[7] A Borel, Linear algebraic groups, Graduate Texts in Math. 126, Springer (1991)

[8] N Bourbaki, Éléments de mathématique: groupes et algèbres de Lie. Chapitre 9. Groupes de Lie réels compacts, Masson (1982) 138

[9] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972)

[10] C Broto, J M Møller, Chevalley $p$–local finite groups, Algebr. Geom. Topol. 7 (2007) 1809

[11] K S Brown, Cohomology of groups, Graduate Texts in Math. 87, Springer (1994)

[12] A Clark, J Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974) 425

[13] M Curtis, A Wiederhold, B Williams, Normalizers of maximal tori, from: "Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974)", Lecture Notes in Math. 418, Springer (1974) 31

[14] W G Dwyer, Lie groups and $p$–compact groups, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 433

[15] W G Dwyer, H R Miller, C W Wilkerson, The homotopic uniqueness of $BS^3$, from: "Algebraic topology, Barcelona, 1986", Lecture Notes in Math. 1298, Springer (1987) 90

[16] W G Dwyer, C W Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. $(2)$ 139 (1994) 395

[17] W G Dwyer, C W Wilkerson, The center of a $p$–compact group, from: "The Čech centennial (Boston, 1993)", Contemp. Math. 181, Amer. Math. Soc. (1995) 119

[18] W G Dwyer, C W Wilkerson, Product splittings for $p$–compact groups, Fund. Math. 147 (1995) 279

[19] W G Dwyer, C W Wilkerson, Normalizers of tori, Geom. Topol. 9 (2005) 1337

[20] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Math. 174, Birkhäuser Verlag (1999)

[21] J F Hämmerli, The outer automorphism group of normalizers of maximal tori in connected compact Lie groups, J. Lie Theory 12 (2002) 357

[22] J F Hämmerli, M Matthey, U Suter, Automorphisms of normalizers of maximal tori and first cohomology of Weyl groups, J. Lie Theory 14 (2004) 583

[23] J E Humphreys, Linear algebraic groups, Graduate Texts in Math. 21, Springer (1975)

[24] J E Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math. 9, Springer (1978)

[25] J E Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Math. 29, Cambridge University Press (1990)

[26] S Jackowski, J Mcclure, B Oliver, Homotopy classification of self-maps of $BG$ via $G$–actions. II, Ann. of Math. $(2)$ 135 (1992) 227

[27] S Jackowski, J Mcclure, B Oliver, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995) 99

[28] W Jones, B Parshall, On the $1$–cohomology of finite groups of Lie type, from: "Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975)", Academic Press (1976) 313

[29] M Matthey, Normalizers of maximal tori and cohomology of Weyl groups, preprint (2002)

[30] D Notbohm, On the “classifying space” functor for compact Lie groups, J. London Math. Soc. $(2)$ 52 (1995) 185

[31] A Osse, $\lambda$–structures and representation rings of compact connected Lie groups, J. Pure Appl. Algebra 121 (1997) 69

[32] C H Sah, Cohomology of split group extensions, J. Algebra 29 (1974) 255

[33] J De Siebenthal, Sur les groupes de Lie compacts non connexes, Comment. Math. Helv. 31 (1956) 41

[34] T A Springer, Linear algebraic groups, Progress in Math. 9, Birkhäuser (1998)

[35] J Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966) 96

Cité par Sources :