Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a model for the space of automorphisms of a connected –compact group in terms of the space of automorphisms of its maximal torus normalizer and its root datum. As a consequence we show that any homomorphism to the outer automorphism group of a –compact group can be lifted to a group action, analogous to a classical theorem of de Siebenthal for compact Lie groups. The model of this paper is used in a crucial way in our paper ‘The classification of 2-compact groups’ [arXiv:math.AT/0611437], where we prove the conjectured classification of –compact groups and determine their automorphism spaces.
Andersen, Kasper K S 1 ; Grodal, Jesper 2
@article{GT_2008_12_3_a4, author = {Andersen, Kasper K S and Grodal, Jesper}, title = {Automorphisms of p{\textendash}compact groups and their root data}, journal = {Geometry & topology}, pages = {1427--1460}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1427}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1427/} }
TY - JOUR AU - Andersen, Kasper K S AU - Grodal, Jesper TI - Automorphisms of p–compact groups and their root data JO - Geometry & topology PY - 2008 SP - 1427 EP - 1460 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1427/ DO - 10.2140/gt.2008.12.1427 ID - GT_2008_12_3_a4 ER -
Andersen, Kasper K S; Grodal, Jesper. Automorphisms of p–compact groups and their root data. Geometry & topology, Tome 12 (2008) no. 3, pp. 1427-1460. doi : 10.2140/gt.2008.12.1427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1427/
[1] The normalizer splitting conjecture for $p$–compact groups, from: "Algebraic Topology. Proceedings of the 4th Conference held in Kazimierz Dolny, June 12–19, 1997" (editors W Dwyer, S Jackowski), Fund. Math. 161 (1999) 1
,[2] The classification of $2$–compact groups
, ,[3] The classification of $p$–compact groups for $p$ odd, Ann. of Math. $(2)$ 167 (2008) 95
, , , ,[4] Finite loop spaces are manifolds, Acta Math. 192 (2004) 5
, , , ,[5] On the cohomology of the finite special linear groups. I, II, J. Algebra 54 (1978) 216, 239
,[6] Modular representation theory: new trends and methods, Lecture Notes in Math. 1081, Springer (1984)
,[7] Linear algebraic groups, Graduate Texts in Math. 126, Springer (1991)
,[8] Éléments de mathématique: groupes et algèbres de Lie. Chapitre 9. Groupes de Lie réels compacts, Masson (1982) 138
,[9] Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972)
, ,[10] Chevalley $p$–local finite groups, Algebr. Geom. Topol. 7 (2007) 1809
, ,[11] Cohomology of groups, Graduate Texts in Math. 87, Springer (1994)
,[12] The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974) 425
, ,[13] Normalizers of maximal tori, from: "Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974)", Lecture Notes in Math. 418, Springer (1974) 31
, , ,[14] Lie groups and $p$–compact groups, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 433
,[15] The homotopic uniqueness of $BS^3$, from: "Algebraic topology, Barcelona, 1986", Lecture Notes in Math. 1298, Springer (1987) 90
, , ,[16] Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. $(2)$ 139 (1994) 395
, ,[17] The center of a $p$–compact group, from: "The Čech centennial (Boston, 1993)", Contemp. Math. 181, Amer. Math. Soc. (1995) 119
, ,[18] Product splittings for $p$–compact groups, Fund. Math. 147 (1995) 279
, ,[19] Normalizers of tori, Geom. Topol. 9 (2005) 1337
, ,[20] Simplicial homotopy theory, Progress in Math. 174, Birkhäuser Verlag (1999)
, ,[21] The outer automorphism group of normalizers of maximal tori in connected compact Lie groups, J. Lie Theory 12 (2002) 357
,[22] Automorphisms of normalizers of maximal tori and first cohomology of Weyl groups, J. Lie Theory 14 (2004) 583
, , ,[23] Linear algebraic groups, Graduate Texts in Math. 21, Springer (1975)
,[24] Introduction to Lie algebras and representation theory, Graduate Texts in Math. 9, Springer (1978)
,[25] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Math. 29, Cambridge University Press (1990)
,[26] Homotopy classification of self-maps of $BG$ via $G$–actions. II, Ann. of Math. $(2)$ 135 (1992) 227
, , ,[27] Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995) 99
, , ,[28] On the $1$–cohomology of finite groups of Lie type, from: "Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975)", Academic Press (1976) 313
, ,[29] Normalizers of maximal tori and cohomology of Weyl groups, preprint (2002)
,[30] On the “classifying space” functor for compact Lie groups, J. London Math. Soc. $(2)$ 52 (1995) 185
,[31] $\lambda$–structures and representation rings of compact connected Lie groups, J. Pure Appl. Algebra 121 (1997) 69
,[32] Cohomology of split group extensions, J. Algebra 29 (1974) 255
,[33] Sur les groupes de Lie compacts non connexes, Comment. Math. Helv. 31 (1956) 41
,[34] Linear algebraic groups, Progress in Math. 9, Birkhäuser (1998)
,[35] Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966) 96
,Cité par Sources :