Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
To a presentation of an oriented link as the closure of a braid we assign a complex of bigraded vector spaces. The Euler characteristic of this complex (and of its triply-graded cohomology groups) is the HOMFLYPT polynomial of the link. We show that the dimension of each cohomology group is a link invariant.
Khovanov, Mikhail 1 ; Rozansky, Lev 2
@article{GT_2008_12_3_a3, author = {Khovanov, Mikhail and Rozansky, Lev}, title = {Matrix factorizations and link homology {II}}, journal = {Geometry & topology}, pages = {1387--1425}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1387}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1387/} }
TY - JOUR AU - Khovanov, Mikhail AU - Rozansky, Lev TI - Matrix factorizations and link homology II JO - Geometry & topology PY - 2008 SP - 1387 EP - 1425 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1387/ DO - 10.2140/gt.2008.12.1387 ID - GT_2008_12_3_a3 ER -
Khovanov, Mikhail; Rozansky, Lev. Matrix factorizations and link homology II. Geometry & topology, Tome 12 (2008) no. 3, pp. 1387-1425. doi : 10.2140/gt.2008.12.1387. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1387/
[1] Categorification of the Kauffman bracket skein module of $I$–bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177
, , ,[2] A Jones polynomial for braid-like isotopies of oriented links and its categorification, Algebr. Geom. Topol. 5 (2005) 1535
, ,[3] Khovanov's homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443
,[4] A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. $($N.S.$)$ 12 (1985) 239
, , , , , ,[5] Note on Khovanov link cohomology
,[6] Khovanov–Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53
, , ,[7] Link homology and Frobenius extensions, Fund. Math. 190 (2006) 179
,[8] Matrix factorizations and link homology, Fundamenta Mathematicae 199 (2008) 1
, ,[9] An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554
,[10] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58
, ,[11] Conway algebras and skein equivalence of links, Proc. Amer. Math. Soc. 100 (1987) 744
, ,[12] Floer homology and knot complements
,[13] Khovanov homology and the slice genus
,[14] Private communication
,[15] Braids, transversal links and the Khovanov–Rozansky theory
,Cité par Sources :