Matrix factorizations and link homology II
Geometry & topology, Tome 12 (2008) no. 3, pp. 1387-1425.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

To a presentation of an oriented link as the closure of a braid we assign a complex of bigraded vector spaces. The Euler characteristic of this complex (and of its triply-graded cohomology groups) is the HOMFLYPT polynomial of the link. We show that the dimension of each cohomology group is a link invariant.

DOI : 10.2140/gt.2008.12.1387
Keywords: link homology, HOMFLY-PT polynomial

Khovanov, Mikhail 1 ; Rozansky, Lev 2

1 Department of Mathematics, Columbia University, New York, NY 10027
2 Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
@article{GT_2008_12_3_a3,
     author = {Khovanov, Mikhail and Rozansky, Lev},
     title = {Matrix factorizations and link homology {II}},
     journal = {Geometry & topology},
     pages = {1387--1425},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1387},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1387/}
}
TY  - JOUR
AU  - Khovanov, Mikhail
AU  - Rozansky, Lev
TI  - Matrix factorizations and link homology II
JO  - Geometry & topology
PY  - 2008
SP  - 1387
EP  - 1425
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1387/
DO  - 10.2140/gt.2008.12.1387
ID  - GT_2008_12_3_a3
ER  - 
%0 Journal Article
%A Khovanov, Mikhail
%A Rozansky, Lev
%T Matrix factorizations and link homology II
%J Geometry & topology
%D 2008
%P 1387-1425
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1387/
%R 10.2140/gt.2008.12.1387
%F GT_2008_12_3_a3
Khovanov, Mikhail; Rozansky, Lev. Matrix factorizations and link homology II. Geometry & topology, Tome 12 (2008) no. 3, pp. 1387-1425. doi : 10.2140/gt.2008.12.1387. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1387/

[1] M M Asaeda, J H Przytycki, A S Sikora, Categorification of the Kauffman bracket skein module of $I$–bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177

[2] B Audoux, T Fiedler, A Jones polynomial for braid-like isotopies of oriented links and its categorification, Algebr. Geom. Topol. 5 (2005) 1535

[3] D Bar-Natan, Khovanov's homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443

[4] P Freyd, D Yetter, J Hoste, W B R Lickorish, K Millett, A Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. $($N.S.$)$ 12 (1985) 239

[5] B Gornik, Note on Khovanov link cohomology

[6] S Gukov, A Schwarz, C Vafa, Khovanov–Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53

[7] M Khovanov, Link homology and Frobenius extensions, Fund. Math. 190 (2006) 179

[8] M Khovanov, L Rozansky, Matrix factorizations and link homology, Fundamenta Mathematicae 199 (2008) 1

[9] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554

[10] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[11] J H Przytycki, P Traczyk, Conway algebras and skein equivalence of links, Proc. Amer. Math. Soc. 100 (1987) 744

[12] J Rasmussen, Floer homology and knot complements

[13] J Rasmussen, Khovanov homology and the slice genus

[14] O Viro, Private communication

[15] H Wu, Braids, transversal links and the Khovanov–Rozansky theory

Cité par Sources :