Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a natural, tame action of the monoid of injective self-maps of the set of natural numbers on the homotopy groups of a symmetric spectrum. This extra algebraic structure allows a conceptual and uniform understanding of various phenomena related to –isomorphisms, semistability and the relationship between naive and true homotopy groups for symmetric spectra.
Schwede, Stefan 1
@article{GT_2008_12_3_a1, author = {Schwede, Stefan}, title = {On the homotopy groups of symmetric spectra}, journal = {Geometry & topology}, pages = {1313--1344}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2008}, doi = {10.2140/gt.2008.12.1313}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1313/} }
Schwede, Stefan. On the homotopy groups of symmetric spectra. Geometry & topology, Tome 12 (2008) no. 3, pp. 1313-1344. doi : 10.2140/gt.2008.12.1313. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1313/
[1] Topological Hochschild homology, preprint, Bielefeld (1985)
,[2] Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972)
, ,[3] Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149
, , ,[4] Smash products and $\Gamma$–spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 311
,[5] Model categories of diagram spectra, Proc. London Math. Soc. $(3)$ 82 (2001) 441
, , , ,[6] Categories and cohomology theories, Topology 13 (1974) 293
,[7] Symmetric spectra and topological Hochschild homology, $K$–Theory 19 (2000) 155
,Cité par Sources :