On the homotopy groups of symmetric spectra
Geometry & topology, Tome 12 (2008) no. 3, pp. 1313-1344.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a natural, tame action of the monoid of injective self-maps of the set of natural numbers on the homotopy groups of a symmetric spectrum. This extra algebraic structure allows a conceptual and uniform understanding of various phenomena related to π–isomorphisms, semistability and the relationship between naive and true homotopy groups for symmetric spectra.

DOI : 10.2140/gt.2008.12.1313
Keywords: symmetric spectrum

Schwede, Stefan 1

1 Mathematisches Institut, Universität Bonn, Beringstraße 3, 53115 Bonn, Germany
@article{GT_2008_12_3_a1,
     author = {Schwede, Stefan},
     title = {On the homotopy groups of symmetric spectra},
     journal = {Geometry & topology},
     pages = {1313--1344},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2008},
     doi = {10.2140/gt.2008.12.1313},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1313/}
}
TY  - JOUR
AU  - Schwede, Stefan
TI  - On the homotopy groups of symmetric spectra
JO  - Geometry & topology
PY  - 2008
SP  - 1313
EP  - 1344
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1313/
DO  - 10.2140/gt.2008.12.1313
ID  - GT_2008_12_3_a1
ER  - 
%0 Journal Article
%A Schwede, Stefan
%T On the homotopy groups of symmetric spectra
%J Geometry & topology
%D 2008
%P 1313-1344
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1313/
%R 10.2140/gt.2008.12.1313
%F GT_2008_12_3_a1
Schwede, Stefan. On the homotopy groups of symmetric spectra. Geometry & topology, Tome 12 (2008) no. 3, pp. 1313-1344. doi : 10.2140/gt.2008.12.1313. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1313/

[1] M Bökstedt, Topological Hochschild homology, preprint, Bielefeld (1985)

[2] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972)

[3] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149

[4] M Lydakis, Smash products and $\Gamma$–spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 311

[5] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. $(3)$ 82 (2001) 441

[6] G Segal, Categories and cohomology theories, Topology 13 (1974) 293

[7] B Shipley, Symmetric spectra and topological Hochschild homology, $K$–Theory 19 (2000) 155

Cité par Sources :