A geometric model for Hochschild homology of Soergel bimodules
Geometry & topology, Tome 12 (2008) no. 2, pp. 1243-1263.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

An important step in the calculation of the triply graded link homology of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for SL(n). We present a geometric model for this Hochschild homology for any simple group G, as B–equivariant intersection cohomology of B×B–orbit closures in G. We show that, in type A, these orbit closures are equivariantly formal for the conjugation B–action. We use this fact to show that, in the case where the corresponding orbit closure is smooth, this Hochschild homology is an exterior algebra over a polynomial ring on generators whose degree is explicitly determined by the geometry of the orbit closure, and to describe its Hilbert series, proving a conjecture of Jacob Rasmussen.

DOI : 10.2140/gt.2008.12.1243
Keywords: Soergel bimodule, Khovanov–Rozansky homology, Hochschild homology

Webster, Ben 1 ; Williamson, Geordie 2

1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
2 Mathematisches Institut der Universität Freiburg, Freiburg 79106, Germany
@article{GT_2008_12_2_a12,
     author = {Webster, Ben and Williamson, Geordie},
     title = {A geometric model for {Hochschild} homology of {Soergel} bimodules},
     journal = {Geometry & topology},
     pages = {1243--1263},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2008},
     doi = {10.2140/gt.2008.12.1243},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1243/}
}
TY  - JOUR
AU  - Webster, Ben
AU  - Williamson, Geordie
TI  - A geometric model for Hochschild homology of Soergel bimodules
JO  - Geometry & topology
PY  - 2008
SP  - 1243
EP  - 1263
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1243/
DO  - 10.2140/gt.2008.12.1243
ID  - GT_2008_12_2_a12
ER  - 
%0 Journal Article
%A Webster, Ben
%A Williamson, Geordie
%T A geometric model for Hochschild homology of Soergel bimodules
%J Geometry & topology
%D 2008
%P 1243-1263
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1243/
%R 10.2140/gt.2008.12.1243
%F GT_2008_12_2_a12
Webster, Ben; Williamson, Geordie. A geometric model for Hochschild homology of Soergel bimodules. Geometry & topology, Tome 12 (2008) no. 2, pp. 1243-1263. doi : 10.2140/gt.2008.12.1243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1243/

[1] E Akyıldız, J B Carrell, A generalization of the Kostant–Macdonald identity, Proc. Nat. Acad. Sci. U.S.A. 86 (1989) 3934

[2] H H Andersen, C Stroppel, Twisting functors on $\mathcal O$, Represent. Theory 7 (2003) 681

[3] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces, I (Luminy, 1981)", Astérisque 100, Soc. Math. France (1982) 5

[4] J Bernstein, V Lunts, Equivariant sheaves and functors, Lecture Notes in Math. 1578, Springer (1994)

[5] P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245

[6] M Goresky, R Kottwitz, R Macpherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998) 25

[7] M Goresky, R Macpherson, Intersection homology theory, Topology 19 (1980) 135

[8] V F R Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. $(2)$ 126 (1987) 335

[9] O Khomenko, V Mazorchuk, On Arkhipov's and Enright's functors, Math. Z. 249 (2005) 357

[10] M Khovanov, Matrix factorizations and link homology II

[11] M Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869

[12] J. Rasmussen, Some differentials on Khovanov–Rozansky homology

[13] R Rouquier, Categorification of the braid groups

[14] W Soergel, Langlands' philosophy and Koszul duality, from: "Algebra—representation theory (Constanta, 2000)", NATO Sci. Ser. II Math. Phys. Chem. 28, Kluwer Acad. Publ. (2001) 379

[15] W Soergel, Kazhdan–Lusztig–Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007) 501

[16] B Webster, Khovanov–Rozansky homology via a canopolis formalism, Algebr. Geom. Topol. 7 (2007) 673

Cité par Sources :