Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
An important step in the calculation of the triply graded link homology of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for . We present a geometric model for this Hochschild homology for any simple group , as –equivariant intersection cohomology of –orbit closures in . We show that, in type A, these orbit closures are equivariantly formal for the conjugation –action. We use this fact to show that, in the case where the corresponding orbit closure is smooth, this Hochschild homology is an exterior algebra over a polynomial ring on generators whose degree is explicitly determined by the geometry of the orbit closure, and to describe its Hilbert series, proving a conjecture of Jacob Rasmussen.
Webster, Ben 1 ; Williamson, Geordie 2
@article{GT_2008_12_2_a12, author = {Webster, Ben and Williamson, Geordie}, title = {A geometric model for {Hochschild} homology of {Soergel} bimodules}, journal = {Geometry & topology}, pages = {1243--1263}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, doi = {10.2140/gt.2008.12.1243}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1243/} }
TY - JOUR AU - Webster, Ben AU - Williamson, Geordie TI - A geometric model for Hochschild homology of Soergel bimodules JO - Geometry & topology PY - 2008 SP - 1243 EP - 1263 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1243/ DO - 10.2140/gt.2008.12.1243 ID - GT_2008_12_2_a12 ER -
%0 Journal Article %A Webster, Ben %A Williamson, Geordie %T A geometric model for Hochschild homology of Soergel bimodules %J Geometry & topology %D 2008 %P 1243-1263 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1243/ %R 10.2140/gt.2008.12.1243 %F GT_2008_12_2_a12
Webster, Ben; Williamson, Geordie. A geometric model for Hochschild homology of Soergel bimodules. Geometry & topology, Tome 12 (2008) no. 2, pp. 1243-1263. doi : 10.2140/gt.2008.12.1243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1243/
[1] A generalization of the Kostant–Macdonald identity, Proc. Nat. Acad. Sci. U.S.A. 86 (1989) 3934
, ,[2] Twisting functors on $\mathcal O$, Represent. Theory 7 (2003) 681
, ,[3] Faisceaux pervers, from: "Analysis and topology on singular spaces, I (Luminy, 1981)", Astérisque 100, Soc. Math. France (1982) 5
, , ,[4] Equivariant sheaves and functors, Lecture Notes in Math. 1578, Springer (1994)
, ,[5] Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245
, , , ,[6] Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998) 25
, , ,[7] Intersection homology theory, Topology 19 (1980) 135
, ,[8] Hecke algebra representations of braid groups and link polynomials, Ann. of Math. $(2)$ 126 (1987) 335
,[9] On Arkhipov's and Enright's functors, Math. Z. 249 (2005) 357
, ,[10] Matrix factorizations and link homology II
,[11] Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869
,[12] Some differentials on Khovanov–Rozansky homology
,[13] Categorification of the braid groups
,[14] Langlands' philosophy and Koszul duality, from: "Algebra—representation theory (Constanta, 2000)", NATO Sci. Ser. II Math. Phys. Chem. 28, Kluwer Acad. Publ. (2001) 379
,[15] Kazhdan–Lusztig–Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007) 501
,[16] Khovanov–Rozansky homology via a canopolis formalism, Algebr. Geom. Topol. 7 (2007) 673
,Cité par Sources :