Standard versus reduced genus-one Gromov–Witten invariants
Geometry & topology, Tome 12 (2008) no. 2, pp. 1203-1241.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give an explicit formula for the difference between the standard and reduced genus-one Gromov–Witten invariants. Combined with previous work on geometric properties of the latter, this paper makes it possible to compute the standard genus-one GW-invariants of complete intersections. In particular, we obtain a closed formula for the genus-one GW-invariants of a Calabi–Yau projective hypersurface and verify a recent mirror symmetry prediction for a sextic fourfold as a special case.

DOI : 10.2140/gt.2008.12.1203
Keywords: Gromov–Witten invariants, mirror symmetry

Zinger, Aleksey 1

1 Department of Mathematics, SUNY Stony Brook, Stony Brook, NY 11794-3651, USA
@article{GT_2008_12_2_a11,
     author = {Zinger, Aleksey},
     title = {Standard versus reduced genus-one {Gromov{\textendash}Witten} invariants},
     journal = {Geometry & topology},
     pages = {1203--1241},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2008},
     doi = {10.2140/gt.2008.12.1203},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1203/}
}
TY  - JOUR
AU  - Zinger, Aleksey
TI  - Standard versus reduced genus-one Gromov–Witten invariants
JO  - Geometry & topology
PY  - 2008
SP  - 1203
EP  - 1241
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1203/
DO  - 10.2140/gt.2008.12.1203
ID  - GT_2008_12_2_a11
ER  - 
%0 Journal Article
%A Zinger, Aleksey
%T Standard versus reduced genus-one Gromov–Witten invariants
%J Geometry & topology
%D 2008
%P 1203-1241
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1203/
%R 10.2140/gt.2008.12.1203
%F GT_2008_12_2_a11
Zinger, Aleksey. Standard versus reduced genus-one Gromov–Witten invariants. Geometry & topology, Tome 12 (2008) no. 2, pp. 1203-1241. doi : 10.2140/gt.2008.12.1203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1203/

[1] M Bershadsky, S Cecotti, H Ooguri, C Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279

[2] P Candelas, X C De La Ossa, P S Green, L Parkes, A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991) 21

[3] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933

[4] A Gathmann, Gromov-Witten invariants of hypersurfaces, \rmHabilitation thesis, Univ of Kaiserslautern, Habilitation thesis, University of Kaiserslautern (2003)

[5] K Hori, S Katz, A Klemm, R Pandharipande, R Thomas, C Vafa, R Vakil, E Zaslow, Mirror symmetry, Clay Math. Monographs 1, Amer. Math. Soc. (2003)

[6] A Klemm, R Pandharipande, Enumerative geometry of Calabi–Yau $4$–folds, to appear in Comm. Math. Phys.

[7] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic $4$–manifolds (Irvine, CA, 1996)", First Int. Press Lect. Ser. I, Int. Press (1998) 47

[8] J Li, A Zinger, On the genus-one Gromov–Witten invariants of complete intersections

[9] D Maulik, R Pandharipande, New calculations in Gromov–Witten theory, to appear in PAMQ

[10] D Maulik, R Pandharipande, A topological view of Gromov–Witten theory, Topology 45 (2006) 887

[11] R Pandharipande, Intersections of $\mathbb{Q}$–divisors on Kontsevich's moduli space $\bar M_{0,n}(\mathbb{P}^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999) 1481

[12] R Vakil, A Zinger, A natural smooth compactification of the space of elliptic curves in projective space, Electron. Res. Announc. Amer. Math. Soc. 13 (2007) 53

[13] R Vakil, A Zinger, A desingularization of the main component of the moduli space of genus-one stable maps into $\mathbb P^n$, Geom. Topol. 12 (2008) 1

[14] D Zagier, A Zinger, Some properties of hypergeometric series associated with mirror symmetry, from: "Modular Forms and String Duality", Fields Institute Communications 54, Amer. Math. Soc.

[15] A Zinger, Reduced genus-one Gromov-Witten invariants

[16] A Zinger, The reduced genus-one Gromov-Witten invariants of Calabi-Yau hypersurfaces

[17] A Zinger, Enumeration of genus-two curves with a fixed complex structure in $\mathbb P^2$ and $\mathbb P^3$, J. Differential Geom. 65 (2003) 341

[18] A Zinger, Enumeration of one-nodal rational curves in projective spaces, Topology 43 (2004) 793

[19] A Zinger, Intersections of tautological classes on blowups of moduli spaces of genus-1 curves, Michigan Math. J. 55 (2007) 535

Cité par Sources :