Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give an explicit formula for the difference between the standard and reduced genus-one Gromov–Witten invariants. Combined with previous work on geometric properties of the latter, this paper makes it possible to compute the standard genus-one GW-invariants of complete intersections. In particular, we obtain a closed formula for the genus-one GW-invariants of a Calabi–Yau projective hypersurface and verify a recent mirror symmetry prediction for a sextic fourfold as a special case.
Zinger, Aleksey 1
@article{GT_2008_12_2_a11, author = {Zinger, Aleksey}, title = {Standard versus reduced genus-one {Gromov{\textendash}Witten} invariants}, journal = {Geometry & topology}, pages = {1203--1241}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, doi = {10.2140/gt.2008.12.1203}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1203/} }
Zinger, Aleksey. Standard versus reduced genus-one Gromov–Witten invariants. Geometry & topology, Tome 12 (2008) no. 2, pp. 1203-1241. doi : 10.2140/gt.2008.12.1203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1203/
[1] Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279
, , , ,[2] A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991) 21
, , , ,[3] Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933
, ,[4] Gromov-Witten invariants of hypersurfaces, \rmHabilitation thesis, Univ of Kaiserslautern, Habilitation thesis, University of Kaiserslautern (2003)
,[5] Mirror symmetry, Clay Math. Monographs 1, Amer. Math. Soc. (2003)
, , , , , , , ,[6] Enumerative geometry of Calabi–Yau $4$–folds, to appear in Comm. Math. Phys.
, ,[7] Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic $4$–manifolds (Irvine, CA, 1996)", First Int. Press Lect. Ser. I, Int. Press (1998) 47
, ,[8] On the genus-one Gromov–Witten invariants of complete intersections
, ,[9] New calculations in Gromov–Witten theory, to appear in PAMQ
, ,[10] A topological view of Gromov–Witten theory, Topology 45 (2006) 887
, ,[11] Intersections of $\mathbb{Q}$–divisors on Kontsevich's moduli space $\bar M_{0,n}(\mathbb{P}^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999) 1481
,[12] A natural smooth compactification of the space of elliptic curves in projective space, Electron. Res. Announc. Amer. Math. Soc. 13 (2007) 53
, ,[13] A desingularization of the main component of the moduli space of genus-one stable maps into $\mathbb P^n$, Geom. Topol. 12 (2008) 1
, ,[14] Some properties of hypergeometric series associated with mirror symmetry, from: "Modular Forms and String Duality", Fields Institute Communications 54, Amer. Math. Soc.
, ,[15] Reduced genus-one Gromov-Witten invariants
,[16] The reduced genus-one Gromov-Witten invariants of Calabi-Yau hypersurfaces
,[17] Enumeration of genus-two curves with a fixed complex structure in $\mathbb P^2$ and $\mathbb P^3$, J. Differential Geom. 65 (2003) 341
,[18] Enumeration of one-nodal rational curves in projective spaces, Topology 43 (2004) 793
,[19] Intersections of tautological classes on blowups of moduli spaces of genus-1 curves, Michigan Math. J. 55 (2007) 535
,Cité par Sources :