Non-commutative Donaldson–Thomas invariants and the conifold
Geometry & topology, Tome 12 (2008) no. 2, pp. 1171-1202.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a quiver algebra A with relations defined by a superpotential, this paper defines a set of invariants of A counting framed cyclic A–modules, analogous to rank–1 Donaldson–Thomas invariants of Calabi–Yau threefolds. For the special case when A is the non-commutative crepant resolution of the threefold ordinary double point, it is proved using torus localization that the invariants count certain pyramid-shaped partition-like configurations, or equivalently infinite dimer configurations in the square dimer model with a fixed boundary condition. The resulting partition function admits an infinite product expansion, which factorizes into the rank–1 Donaldson–Thomas partition functions of the commutative crepant resolution of the singularity and its flop. The different partition functions are speculatively interpreted as counting stable objects in the derived category of A–modules under different stability conditions; their relationship should then be an instance of wall crossing in the space of stability conditions on this triangulated category.

DOI : 10.2140/gt.2008.12.1171
Keywords: enumerative invariants, Calabi-Yau algebra

Szendrői, Balázs 1

1 Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, UK
@article{GT_2008_12_2_a10,
     author = {Szendr\H{o}i, Bal\'azs},
     title = {Non-commutative {Donaldson{\textendash}Thomas} invariants and the conifold},
     journal = {Geometry & topology},
     pages = {1171--1202},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2008},
     doi = {10.2140/gt.2008.12.1171},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1171/}
}
TY  - JOUR
AU  - Szendrői, Balázs
TI  - Non-commutative Donaldson–Thomas invariants and the conifold
JO  - Geometry & topology
PY  - 2008
SP  - 1171
EP  - 1202
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1171/
DO  - 10.2140/gt.2008.12.1171
ID  - GT_2008_12_2_a10
ER  - 
%0 Journal Article
%A Szendrői, Balázs
%T Non-commutative Donaldson–Thomas invariants and the conifold
%J Geometry & topology
%D 2008
%P 1171-1202
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1171/
%R 10.2140/gt.2008.12.1171
%F GT_2008_12_2_a10
Szendrői, Balázs. Non-commutative Donaldson–Thomas invariants and the conifold. Geometry & topology, Tome 12 (2008) no. 2, pp. 1171-1202. doi : 10.2140/gt.2008.12.1171. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1171/

[1] M Artin, J J Zhang, Abstract Hilbert schemes, Algebr. Represent. Theory 4 (2001) 305

[2] K Behrend, Donaldson–Thomas invariants via microlocal geometry (2005)

[3] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45

[4] K Behrend, B Fantechi, Symmetric obstruction theories and Hilbert schemes of points on threefolds (2005)

[5] M Van Den Bergh, Non-commutative crepant resolutions, from: "The legacy of Niels Henrik Abel", Springer (2004) 749

[6] M Van Den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004) 423

[7] R Bocklandt, Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra 212 (2008) 14

[8] T Bridgeland, Derived categories of coherent sheaves, from: "International Congress of Mathematicians. Vol. II", Eur. Math. Soc., Zürich (2006) 563

[9] T Bridgeland, Stability conditions on triangulated categories, Ann. Math. 166 (2007) 317

[10] A Dabholkar, F Denef, G W Moore, B Pioline, Precision counting of small black holes, J. High Energy Phys. (2005) 096

[11] F Denef, G W Moore, Split states, entropy enigmas, holes and halos (2007)

[12] B Feng, Y H He, K D Kennaway, C Vafa, Dimer models from mirror symmetry and quivering amoebae (2005)

[13] S Franco, A Hanany, D Vegh, B Wecht, K D Kennaway, Brane dimers and quiver gauge theories, J. High Energy Phys. (2006) 096

[14] V Ginzburg, Calabi–Yau algebras (2006)

[15] R Gopakumar, C Vafa, M–theory and topological strings (1998)

[16] A Hanany, K D Kennaway, Dimer models and toric diagrams (2005)

[17] S Hyun, S H Yi, Non-compact topological branes on conifold, J. High Energy Phys. (2006) 075

[18] A Iqbal, N Nekrasov, A Okounkov, C Vafa, Quantum foam and topological strings (2003)

[19] A K Kashani-Poor, The wave function behavior of the open topological string partition function on the conifold, J. High Energy Phys. (2007) 004

[20] R Kenyon, Talk at the Workshop on random partitions and Calabi–Yau crystals, Amsterdam (2005)

[21] A D King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. $(2)$ 45 (1994) 515

[22] I R Klebanov, E Witten, Superconformal field theory on threebranes at a Calabi–Yau singularity, Nuclear Phys. B 536 (1999) 199

[23] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006) 1263

[24] A Okounkov, N Reshetikhin, C Vafa, Quantum Calabi–Yau and classical crystals, from: "The unity of mathematics", Progr. Math. 244, Birkhäuser (2006) 597

[25] E Segal, The A–infinity deformation theory of a point and the derived categories of local Calabi–Yaus (2007)

[26] R P Thomas, Gauge theory on Calabi–Yau manifolds, DPhil Thesis, University of Oxford (1997)

[27] R P Thomas, A holomorphic Casson invariant for Calabi–Yau 3–folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000) 367

[28] Y Toda, Stability conditions and crepant small resolutions (2005)

[29] B Young, Computing a pyramid partition generating function with dimer shuffling (2007)

[30] B Young, Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds (2008)

Cité par Sources :