Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Lagrangian cobordisms are three-dimensional compact oriented cobordisms between once-punctured surfaces, subject to some homological conditions. We extend the Le–Murakami–Ohtsuki invariant of homology three-spheres to a functor from the category of Lagrangian cobordisms to a certain category of Jacobi diagrams. We prove some properties of this functorial LMO invariant, including its universality among rational finite-type invariants of Lagrangian cobordisms. Finally, we apply the LMO functor to the study of homology cylinders from the point of view of their finite-type invariants.
Cheptea, Dorin 1 ; Habiro, Kazuo 2 ; Massuyeau, Gwénaël 3
@article{GT_2008_12_2_a9, author = {Cheptea, Dorin and Habiro, Kazuo and Massuyeau, Gw\'ena\"el}, title = {A functorial {LMO} invariant for {Lagrangian} cobordisms}, journal = {Geometry & topology}, pages = {1091--1170}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, doi = {10.2140/gt.2008.12.1091}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1091/} }
TY - JOUR AU - Cheptea, Dorin AU - Habiro, Kazuo AU - Massuyeau, Gwénaël TI - A functorial LMO invariant for Lagrangian cobordisms JO - Geometry & topology PY - 2008 SP - 1091 EP - 1170 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1091/ DO - 10.2140/gt.2008.12.1091 ID - GT_2008_12_2_a9 ER -
%0 Journal Article %A Cheptea, Dorin %A Habiro, Kazuo %A Massuyeau, Gwénaël %T A functorial LMO invariant for Lagrangian cobordisms %J Geometry & topology %D 2008 %P 1091-1170 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1091/ %R 10.2140/gt.2008.12.1091 %F GT_2008_12_2_a9
Cheptea, Dorin; Habiro, Kazuo; Massuyeau, Gwénaël. A functorial LMO invariant for Lagrangian cobordisms. Geometry & topology, Tome 12 (2008) no. 2, pp. 1091-1170. doi : 10.2140/gt.2008.12.1091. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1091/
[1] On the Vassiliev knot invariants, Topology 34 (1995) 423
,[2] The \AArhus integral of rational homology 3-spheres. I. A highly non trivial flat connection on $S^3$, Selecta Math. $($N.S.$)$ 8 (2002) 315
, , , ,[3] The \AArhus integral of rational homology 3-spheres. II. Invariance and universality, Selecta Math. $($N.S.$)$ 8 (2002) 341
, , , ,[4] A rational surgery formula for the LMO invariant, Israel J. Math. 140 (2004) 29
, ,[5] Three-cobordisms with their rational homology on the boundary, preprint (2005) to appear in J. Knot Theory Ramifications
, ,[6] A TQFT associated to the LMO invariant of three-dimensional manifolds, Comm. Math. Phys. 272 (2007) 601
, ,[7] On algebraic structures implicit in topological quantum field theories, J. Knot Theory Ramifications 8 (1999) 125
, ,[8] The mystery of the brane relation, J. Knot Theory Ramifications 11 (2002) 725
,[9] Calculus of clovers and finite type invariants of 3–manifolds, Geom. Topol. 5 (2001) 75
, , ,[10] Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, from: "Graphs and patterns in mathematics and theoretical physics", Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 173
, ,[11] Finite type invariants and $n$–equivalence of $3$–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517
,[12] Variations of knotted graphs. The geometric technique of $n$–equivalence, Algebra i Analiz 12 (2000) 79
,[13] Milnor, Johnson and tree-level perturbative invariants, preprint (2000)
,[14] On link concordance and Milnor's $\overline {\mu}$ invariants, Bull. London Math. Soc. 30 (1998) 419
, ,[15] The Kontsevich integral and Milnor's invariants, Topology 39 (2000) 1253
, ,[16] Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1
,[17] Bottom tangles and universal invariants, Algebr. Geom. Topol. 6 (2006) 1113
,[18] On the group-like behavior of the Le–Murakami–Ohtsuki invariant, J. Knot Theory Ramifications 16 (2007) 699
, , ,[19] Bridged links and tangle presentations of cobordism categories, Adv. Math. 141 (1999) 207
,[20] Towards an algebraic characterization of 3–dimensional cobordisms, from: "Diagrammatic morphisms and applications (San Francisco, CA, 2000)", Contemp. Math. 318, Amer. Math. Soc. (2003) 141
,[21] An invariant of integral homology $3$–spheres which is universal for all finite type invariants, from: "Solitons, geometry, and topology: on the crossroad", Amer. Math. Soc. Transl. Ser. 2 179, Amer. Math. Soc. (1997) 75
,[22] The LMO invariant, lecture notes from: “Ecole d’Eté de Mathématiques: Invariants de noeuds et de variétés de dimension trois”, Institut Fourier (1999)
,[23] Representation of the category of tangles by Kontsevich's iterated integral, Comm. Math. Phys. 168 (1995) 535
, ,[24] The universal Vassiliev–Kontsevich invariant for framed oriented links, Compositio Math. 102 (1996) 41
, ,[25] Parallel version of the universal Vassiliev–Kontsevich invariant, J. Pure Appl. Algebra 121 (1997) 271
, ,[26] On a universal perturbative invariant of $3$–manifolds, Topology 37 (1998) 539
, , ,[27] Splitting formulae for the Kontsevich–Kuperberg–Thurston invariant of rational homology $3$–spheres, preprint (2004)
,[28] Finite-type invariants of 3–manifolds and the dimension subgroup problem, J. Lond. Math. Soc. $(2)$ 75 (2007) 791
,[29] Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268, 345
,[30] On the structure of Hopf algebras, Ann. of Math. $(2)$ 81 (1965) 211
, ,[31] The \AArhus integral and the $\mu$–invariants, J. Knot Theory Ramifications 15 (2006) 361
,[32] On the structure of the Torelli group and the Casson invariant, Topology 30 (1991) 603
,[33] On a certain move generating link-homology, Math. Ann. 284 (1989) 75
, ,[34] Topological quantum field theory for the universal quantum invariant, Comm. Math. Phys. 188 (1997) 501
, ,[35] Quantum invariants, Series on Knots and Everything 29, World Scientific Publishing Co. (2002)
,[36] Homology and central series of groups, J. Algebra 2 (1965) 170
,Cité par Sources :