A desingularization of the main component of the moduli space of genus-one stable maps into ℙn
Geometry & topology, Tome 12 (2008) no. 1, pp. 1-95.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a natural smooth compactification of the space of smooth genus-one curves with k distinct points in a projective space. It can be viewed as an analogue of a well-known smooth compactification of the space of smooth genus-zero curves, that is, the space of stable genus-zero maps M̄0,k(n,d). In fact, our compactification is obtained from the singular space of stable genus-one maps M̄1,k(n,d) through a natural sequence of blowups along “bad” subvarieties. While this construction is simple to describe, it requires more work to show that the end result is a smooth space. As a bonus, we obtain desingularizations of certain natural sheaves over the “main” irreducible component M̄1,k0(n,d) of M̄1,k(n,d). A number of applications of these desingularizations in enumerative geometry and Gromov–Witten theory are described in the introduction, including the second author’s proof of physicists’ predictions for genus-one Gromov–Witten invariants of a quintic threefold.

DOI : 10.2140/gt.2008.12.1
Keywords: moduli space of stable maps, genus one, smooth compactification

Vakil, Ravi 1 ; Zinger, Aleksey 2

1 Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA
2 Department of Mathematics, SUNY Stony Brook, Stony Brook, NY 11794-3651, USA
@article{GT_2008_12_1_a0,
     author = {Vakil, Ravi and Zinger, Aleksey},
     title = {A desingularization of the main component of the moduli space of genus-one stable maps into {\ensuremath{\mathbb{P}}n}},
     journal = {Geometry & topology},
     pages = {1--95},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     doi = {10.2140/gt.2008.12.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1/}
}
TY  - JOUR
AU  - Vakil, Ravi
AU  - Zinger, Aleksey
TI  - A desingularization of the main component of the moduli space of genus-one stable maps into ℙn
JO  - Geometry & topology
PY  - 2008
SP  - 1
EP  - 95
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1/
DO  - 10.2140/gt.2008.12.1
ID  - GT_2008_12_1_a0
ER  - 
%0 Journal Article
%A Vakil, Ravi
%A Zinger, Aleksey
%T A desingularization of the main component of the moduli space of genus-one stable maps into ℙn
%J Geometry & topology
%D 2008
%P 1-95
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1/
%R 10.2140/gt.2008.12.1
%F GT_2008_12_1_a0
Vakil, Ravi; Zinger, Aleksey. A desingularization of the main component of the moduli space of genus-one stable maps into ℙn. Geometry & topology, Tome 12 (2008) no. 1, pp. 1-95. doi : 10.2140/gt.2008.12.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1/

[1] M F Atiyah, R Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1

[2] A Beauville, Quantum cohomology of complete intersections, Mat. Fiz. Anal. Geom. 2 (1995) 384

[3] M Bershadsky, S Cecotti, H Ooguri, C Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279

[4] A Bertram, Another way to enumerate rational curves with torus actions, Invent. Math. 142 (2000) 487

[5] C Fontanari, Towards the cohomology of moduli spaces of higher genus stable maps

[6] W Fulton, R Pandharipande, Notes on stable maps and quantum cohomology, from: "Algebraic geometry—Santa Cruz 1995", Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45

[7] A Gathmann, Absolute and relative Gromov–Witten invariants of very ample hypersurfaces, Duke Math. J. 115 (2002) 171

[8] A Givental, The mirror formula for quintic threefolds, from: "Northern California Symplectic Geometry Seminar", Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 49

[9] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[10] K Hori, S Katz, A Klemm, R Pandharipande, R Thomas, C Vafa, R Vakil, E Zaslow, Mirror symmetry, Clay Mathematics Monographs 1, American Mathematical Society (2003)

[11] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525

[12] Y P Lee, Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001) 121

[13] J Li, A Zinger, On the genus-one Gromov-Witten invariants of complete intersections

[14] B H Lian, K Liu, S T Yau, Mirror principle. I, Asian J. Math. 1 (1997) 729

[15] D Maulik, R Pandharipande, A topological view of Gromov–Witten theory, Topology 45 (2006) 887

[16] R Pandharipande, Intersections of $\mathbf{Q}$–divisors on Kontsevich's moduli space $\overline{M}_{0,n}(\mathbf{P}^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999) 1481

[17] Y Ruan, G Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259

[18] R Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000) 101

[19] R Vakil, Murphy's law in algebraic geometry: badly-behaved deformation spaces, Invent. Math. 164 (2006) 569

[20] R Vakil, A Zinger, A natural smooth compactification of the space of elliptic curves in projective space, Electron. Res. Announc. Amer. Math. Soc. 13 (2007) 53

[21] A Zinger, Enumeration of genus-two curves with a fixed complex structure in $\mathbb P^2$ and $\mathbb P^3$, J. Differential Geom. 65 (2003) 341

[22] A Zinger, Enumeration of one-nodal rational curves in projective spaces, Topology 43 (2004) 793

[23] A Zinger, Counting rational curves of arbitrary shape in projective spaces, Geom. Topol. 9 (2005) 571

[24] A Zinger, A sharp compactness theorem for genus-one pseudo-holomorphic maps

[25] A Zinger, On the structure of certain natural cones over moduli spaces of genus-one holomorphic maps, Adv. Math. 214 (2007) 878

[26] A Zinger, Reduced genus-one Gromov-Witten invariants

[27] A Zinger, Intersections of tautological classes on blowups of moduli spaces of genus-one curves, Michigan Math. J. 55 (2007) 535

[28] A Zinger, The reduced genus-one Gromov-Witten invariants of Calabi-Yau hypersurfaces

Cité par Sources :