Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a natural smooth compactification of the space of smooth genus-one curves with distinct points in a projective space. It can be viewed as an analogue of a well-known smooth compactification of the space of smooth genus-zero curves, that is, the space of stable genus-zero maps . In fact, our compactification is obtained from the singular space of stable genus-one maps through a natural sequence of blowups along “bad” subvarieties. While this construction is simple to describe, it requires more work to show that the end result is a smooth space. As a bonus, we obtain desingularizations of certain natural sheaves over the “main” irreducible component of . A number of applications of these desingularizations in enumerative geometry and Gromov–Witten theory are described in the introduction, including the second author’s proof of physicists’ predictions for genus-one Gromov–Witten invariants of a quintic threefold.
Vakil, Ravi 1 ; Zinger, Aleksey 2
@article{GT_2008_12_1_a0, author = {Vakil, Ravi and Zinger, Aleksey}, title = {A desingularization of the main component of the moduli space of genus-one stable maps into {\ensuremath{\mathbb{P}}n}}, journal = {Geometry & topology}, pages = {1--95}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2008}, doi = {10.2140/gt.2008.12.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1/} }
TY - JOUR AU - Vakil, Ravi AU - Zinger, Aleksey TI - A desingularization of the main component of the moduli space of genus-one stable maps into ℙn JO - Geometry & topology PY - 2008 SP - 1 EP - 95 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1/ DO - 10.2140/gt.2008.12.1 ID - GT_2008_12_1_a0 ER -
%0 Journal Article %A Vakil, Ravi %A Zinger, Aleksey %T A desingularization of the main component of the moduli space of genus-one stable maps into ℙn %J Geometry & topology %D 2008 %P 1-95 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1/ %R 10.2140/gt.2008.12.1 %F GT_2008_12_1_a0
Vakil, Ravi; Zinger, Aleksey. A desingularization of the main component of the moduli space of genus-one stable maps into ℙn. Geometry & topology, Tome 12 (2008) no. 1, pp. 1-95. doi : 10.2140/gt.2008.12.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1/
[1] The moment map and equivariant cohomology, Topology 23 (1984) 1
, ,[2] Quantum cohomology of complete intersections, Mat. Fiz. Anal. Geom. 2 (1995) 384
,[3] Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279
, , , ,[4] Another way to enumerate rational curves with torus actions, Invent. Math. 142 (2000) 487
,[5] Towards the cohomology of moduli spaces of higher genus stable maps
,[6] Notes on stable maps and quantum cohomology, from: "Algebraic geometry—Santa Cruz 1995", Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45
, ,[7] Absolute and relative Gromov–Witten invariants of very ample hypersurfaces, Duke Math. J. 115 (2002) 171
,[8] The mirror formula for quintic threefolds, from: "Northern California Symplectic Geometry Seminar", Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 49
,[9] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[10] Mirror symmetry, Clay Mathematics Monographs 1, American Mathematical Society (2003)
, , , , , , , ,[11] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525
, ,[12] Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001) 121
,[13] On the genus-one Gromov-Witten invariants of complete intersections
, ,[14] Mirror principle. I, Asian J. Math. 1 (1997) 729
, , ,[15] A topological view of Gromov–Witten theory, Topology 45 (2006) 887
, ,[16] Intersections of $\mathbf{Q}$–divisors on Kontsevich's moduli space $\overline{M}_{0,n}(\mathbf{P}^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999) 1481
,[17] A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259
, ,[18] The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000) 101
,[19] Murphy's law in algebraic geometry: badly-behaved deformation spaces, Invent. Math. 164 (2006) 569
,[20] A natural smooth compactification of the space of elliptic curves in projective space, Electron. Res. Announc. Amer. Math. Soc. 13 (2007) 53
, ,[21] Enumeration of genus-two curves with a fixed complex structure in $\mathbb P^2$ and $\mathbb P^3$, J. Differential Geom. 65 (2003) 341
,[22] Enumeration of one-nodal rational curves in projective spaces, Topology 43 (2004) 793
,[23] Counting rational curves of arbitrary shape in projective spaces, Geom. Topol. 9 (2005) 571
,[24] A sharp compactness theorem for genus-one pseudo-holomorphic maps
,[25] On the structure of certain natural cones over moduli spaces of genus-one holomorphic maps, Adv. Math. 214 (2007) 878
,[26] Reduced genus-one Gromov-Witten invariants
,[27] Intersections of tautological classes on blowups of moduli spaces of genus-one curves, Michigan Math. J. 55 (2007) 535
,[28] The reduced genus-one Gromov-Witten invariants of Calabi-Yau hypersurfaces
,Cité par Sources :