Quasi-isometric rigidity of higher rank S–arithmetic lattices
Geometry & topology, Tome 11 (2007) no. 2, pp. 995-1048.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that S–arithmetic lattices in semisimple Lie groups with no rank one factors are quasi-isometrically rigid.

DOI : 10.2140/gt.2007.11.995
Keywords: quasi-isometry, arithmetic, quasi-isometry, arithmetic

Wortman, Kevin 1

1 Mathematics Department, Yale University, PO Box 208283, New Haven CT 06520-8283, USA
@article{GT_2007_11_2_a9,
     author = {Wortman, Kevin},
     title = {Quasi-isometric rigidity of higher rank {S{\textendash}arithmetic} lattices},
     journal = {Geometry & topology},
     pages = {995--1048},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2007},
     doi = {10.2140/gt.2007.11.995},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.995/}
}
TY  - JOUR
AU  - Wortman, Kevin
TI  - Quasi-isometric rigidity of higher rank S–arithmetic lattices
JO  - Geometry & topology
PY  - 2007
SP  - 995
EP  - 1048
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.995/
DO  - 10.2140/gt.2007.11.995
ID  - GT_2007_11_2_a9
ER  - 
%0 Journal Article
%A Wortman, Kevin
%T Quasi-isometric rigidity of higher rank S–arithmetic lattices
%J Geometry & topology
%D 2007
%P 995-1048
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.995/
%R 10.2140/gt.2007.11.995
%F GT_2007_11_2_a9
Wortman, Kevin. Quasi-isometric rigidity of higher rank S–arithmetic lattices. Geometry & topology, Tome 11 (2007) no. 2, pp. 995-1048. doi : 10.2140/gt.2007.11.995. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.995/

[1] H Abels, Finiteness properties of certain arithmetic groups in the function field case, Israel J. Math. 76 (1991) 113

[2] P Abramenko, Finiteness properties of Chevalley groups over $\mathbb{F}_q[t]$, Israel J. Math. 87 (1994) 203

[3] H Behr, $\mathrm{SL}_3(\mathbb{F}_q[t])$ is not finitely presentable, from: "Homological group theory (Proc. Sympos., Durham, 1977)", London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 213

[4] F Blume, Ergodic theory, from: "Handbook of measure theory, Vol. II", North–Holland (2002) 1185

[5] A Borel, Density and maximality of arithmetic subgroups, J. Reine Angew. Math. 224 (1966) 78

[6] A Borel, Linear algebraic groups, Graduate Texts in Mathematics 126, Springer (1991)

[7] A Borel, T A Springer, Rationality properties of linear algebraic groups. II, Tôhoku Math. J. $(2)$ 20 (1968) 443

[8] A Borel, J Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. $(2)$ 97 (1973) 499

[9] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999)

[10] K S Brown, Buildings, Springer (1989)

[11] C Druţu, Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal. 10 (2000) 327

[12] A Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321

[13] A Eskin, B Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653

[14] B Farb, The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Lett. 4 (1997) 705

[15] B Farb, R Schwartz, The large-scale geometry of Hilbert modular groups, J. Differential Geom. 44 (1996) 435

[16] G Harder, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen III, J. Reine Angew. Math. 274/275 (1975) 125

[17] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115

[18] A Lubotzky, S Mozes, M S Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000) 5

[19] G A Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer (1991)

[20] G D Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press (1973)

[21] V Platonov, A Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics 139, Academic Press (1994)

[22] G Prasad, Strong rigidity of $\mathbb{Q}$–rank $1$ lattices, Invent. Math. 21 (1973) 255

[23] G Prasad, Strong approximation for semi-simple groups over function fields, Ann. of Math. $(2)$ 105 (1977) 553

[24] G Prasad, Lattices in semisimple groups over local fields, from: "Studies in algebra and number theory", Adv. in Math. Suppl. Stud. 6, Academic Press (1979) 285

[25] M Ratner, On the $p$–adic and $S$–arithmetic generalizations of Raghunathan's conjectures, from: "Lie groups and ergodic theory (Mumbai, 1996)", Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res. (1998) 167

[26] R E Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995)

[27] R E Schwartz, Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996) 75

[28] J Taback, Quasi-isometric rigidity for $\mathrm{PSL}_2(\mathbb{Z}[1/p])$, Duke Math. J. 101 (2000) 335

[29] J Tits, Algebraic and abstract simple groups, Ann. of Math. $(2)$ 80 (1964) 313

[30] J Tits, Buildings of spherical type and finite BN–pairs, Lecture Notes in Mathematics 386, Springer (1974)

[31] T N Venkataramana, On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Invent. Math. 92 (1988) 255

[32] K Wortman, Quasiflats with holes in reductive groups, Algebr. Geom. Topol. 6 (2006) 91

[33] K Wortman, Quasi-isometries of $\mathbf{SL}_n(\mathbb{F}_q[t])$, (in preparation)

Cité par Sources :