Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that –arithmetic lattices in semisimple Lie groups with no rank one factors are quasi-isometrically rigid.
Wortman, Kevin 1
@article{GT_2007_11_2_a9, author = {Wortman, Kevin}, title = {Quasi-isometric rigidity of higher rank {S{\textendash}arithmetic} lattices}, journal = {Geometry & topology}, pages = {995--1048}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2007}, doi = {10.2140/gt.2007.11.995}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.995/} }
Wortman, Kevin. Quasi-isometric rigidity of higher rank S–arithmetic lattices. Geometry & topology, Tome 11 (2007) no. 2, pp. 995-1048. doi : 10.2140/gt.2007.11.995. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.995/
[1] Finiteness properties of certain arithmetic groups in the function field case, Israel J. Math. 76 (1991) 113
,[2] Finiteness properties of Chevalley groups over $\mathbb{F}_q[t]$, Israel J. Math. 87 (1994) 203
,[3] $\mathrm{SL}_3(\mathbb{F}_q[t])$ is not finitely presentable, from: "Homological group theory (Proc. Sympos., Durham, 1977)", London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 213
,[4] Ergodic theory, from: "Handbook of measure theory, Vol. II", North–Holland (2002) 1185
,[5] Density and maximality of arithmetic subgroups, J. Reine Angew. Math. 224 (1966) 78
,[6] Linear algebraic groups, Graduate Texts in Mathematics 126, Springer (1991)
,[7] Rationality properties of linear algebraic groups. II, Tôhoku Math. J. $(2)$ 20 (1968) 443
, ,[8] Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. $(2)$ 97 (1973) 499
, ,[9] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999)
, ,[10] Buildings, Springer (1989)
,[11] Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal. 10 (2000) 327
,[12] Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321
,[13] Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653
, ,[14] The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Lett. 4 (1997) 705
,[15] The large-scale geometry of Hilbert modular groups, J. Differential Geom. 44 (1996) 435
, ,[16] Über die Galoiskohomologie halbeinfacher algebraischer Gruppen III, J. Reine Angew. Math. 274/275 (1975) 125
,[17] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115
, ,[18] The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000) 5
, , ,[19] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer (1991)
,[20] Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press (1973)
,[21] Algebraic groups and number theory, Pure and Applied Mathematics 139, Academic Press (1994)
, ,[22] Strong rigidity of $\mathbb{Q}$–rank $1$ lattices, Invent. Math. 21 (1973) 255
,[23] Strong approximation for semi-simple groups over function fields, Ann. of Math. $(2)$ 105 (1977) 553
,[24] Lattices in semisimple groups over local fields, from: "Studies in algebra and number theory", Adv. in Math. Suppl. Stud. 6, Academic Press (1979) 285
,[25] On the $p$–adic and $S$–arithmetic generalizations of Raghunathan's conjectures, from: "Lie groups and ergodic theory (Mumbai, 1996)", Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res. (1998) 167
,[26] The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995)
,[27] Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996) 75
,[28] Quasi-isometric rigidity for $\mathrm{PSL}_2(\mathbb{Z}[1/p])$, Duke Math. J. 101 (2000) 335
,[29] Algebraic and abstract simple groups, Ann. of Math. $(2)$ 80 (1964) 313
,[30] Buildings of spherical type and finite BN–pairs, Lecture Notes in Mathematics 386, Springer (1974)
,[31] On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Invent. Math. 92 (1988) 255
,[32] Quasiflats with holes in reductive groups, Algebr. Geom. Topol. 6 (2006) 91
,[33] Quasi-isometries of $\mathbf{SL}_n(\mathbb{F}_q[t])$, (in preparation)
,Cité par Sources :