Homotopical intersection theory I
Geometry & topology, Tome 11 (2007) no. 2, pp. 939-977.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a new approach to intersection theory. Our “cycles” are closed manifolds mapping into compact manifolds and our “intersections” are elements of a homotopy group of a certain Thom space. The results are then applied in various contexts, including fixed point, linking and disjunction problems. Our main theorems resemble those of Hatcher and Quinn but our proofs are fundamentally different.
Errata  Minor errors were corrected on page 967 (18 February 2008).

DOI : 10.2140/gt.2007.11.939
Keywords: intersection, Poincaré duality, bordism

Klein, John R 1 ; Williams, E Bruce 2

1 Wayne State University, Detroit MI 48202, USA
2 University of Notre Dame, Notre Dame IN 46556, USA
@article{GT_2007_11_2_a7,
     author = {Klein, John R and Williams, E Bruce},
     title = {Homotopical intersection theory {I}},
     journal = {Geometry & topology},
     pages = {939--977},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2007},
     doi = {10.2140/gt.2007.11.939},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.939/}
}
TY  - JOUR
AU  - Klein, John R
AU  - Williams, E Bruce
TI  - Homotopical intersection theory I
JO  - Geometry & topology
PY  - 2007
SP  - 939
EP  - 977
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.939/
DO  - 10.2140/gt.2007.11.939
ID  - GT_2007_11_2_a7
ER  - 
%0 Journal Article
%A Klein, John R
%A Williams, E Bruce
%T Homotopical intersection theory I
%J Geometry & topology
%D 2007
%P 939-977
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.939/
%R 10.2140/gt.2007.11.939
%F GT_2007_11_2_a7
Klein, John R; Williams, E Bruce. Homotopical intersection theory I. Geometry & topology, Tome 11 (2007) no. 2, pp. 939-977. doi : 10.2140/gt.2007.11.939. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.939/

[1] M Aouina, The moduli space of thickenings, PhD thesis, Wayne State University (2005)

[2] J C Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc. 133 (1968) 447

[3] J C Becker, Extensions of cohomology theories, Illinois J. Math. 14 (1970) 551

[4] R F Brown, On a homotopy converse to the Lefschetz fixed point theorem, Pacific J. Math. 17 (1966) 407

[5] R F Brown, The Lefschetz fixed point theorem, Scott, Foresman and Co., Glenview, Ill.-London (1971)

[6] D Burghelea, R Lashof, M Rothenberg, Groups of automorphisms of manifolds, Springer (1975)

[7] V V Chernov, Y B Rudyak, Toward a general theory of linking invariants, Geom. Topol. 9 (2005) 1881

[8] V Coufal, A family version of Lefschetz–Nielsen fixed point theory, PhD thesis, University of Notre Dame (2004)

[9] M C Crabb, $\mathbb{Z}/2$–homotopy theory, London Mathematical Society Lecture Note Series 44, Cambridge University Press (1980)

[10] M Crabb, I James, Fibrewise homotopy theory, Springer Monographs in Mathematics, Springer London Ltd. (1998)

[11] J P Dax, Étude homotopique des espaces de plongements, Ann. Sci. École Norm. Sup. $(4)$ 5 (1972) 303

[12] A Dold, The fixed point index of fibre-preserving maps, Invent. Math. 25 (1974) 281

[13] R Geoghegan, A Nicas, Parametrized Lefschetz–Nielsen fixed point theory and Hochschild homology traces, Amer. J. Math. 116 (1994) 397

[14] T Goodwillie, J Klein, Multiple disjunction for spaces of Poincaré embeddings

[15] A Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962/1963) 155

[16] I M Hall, The generalized Whitney sum, Quart. J. Math. Oxford Ser. $(2)$ 16 (1965) 360

[17] A Hatcher, F Quinn, Bordism invariants of intersections of submanifolds, Trans. Amer. Math. Soc. 200 (1974) 327

[18] J C Hausmann, P Vogel, Geometry on Poincaré spaces, Mathematical Notes 41, Princeton University Press (1993)

[19] P Hu, Duality for smooth families in equivariant stable homotopy theory, Astérisque 285 (2003)

[20] L Jones, Patch spaces: a geometric representation for Poincaré spaces, Ann. of Math. $(2)$ 97 (1973) 306

[21] T Kálmán, A Szűcs, On double points of immersed surfaces, from: "Proceedings of the Janos Bolyai Mathematical Society 8th International Topology Conference (Gyula, 1998)" (2002) 131

[22] J R Klein, The dualizing spectrum of a topological group, Math. Ann. 319 (2001) 421

[23] J R Klein, Embedding, compression and fiberwise homotopy theory, Algebr. Geom. Topol. 2 (2002) 311

[24] J R Klein, E B Willams, Homotopical intersection theory, II

[25] U Koschorke, Link maps and the geometry of their invariants, Manuscripta Math. 61 (1988) 383

[26] L L Larmore, Twisted cohomology theories and the single obstruction to lifting, Pacific J. Math. 41 (1972) 755

[27] F Laudenbach, Disjonction de sous-variétés et application au croisement des anses, Ann. Sci. École Norm. Sup. (4) 3 (1970) 385

[28] N Levitt, On the structure of Poincaré duality spaces, Topology 7 (1968) 369

[29] B H Li, Generalization of the Whitney–Mahowald theorem, Trans. Amer. Math. Soc. 346 (1994) 511

[30] W S Massey, D Rolfsen, Homotopy classification of higher-dimensional links, Indiana Univ. Math. J. 34 (1985) 375

[31] J P May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics 91, Conference Board of the Mathematical Sciences (1996)

[32] C Morlet, Isotopie et pseudo-isotopie, C. R. Acad. Sci. Paris Sér. A-B 268 (1969)

[33] F Quinn, Surgery on Poincaré and normal spaces, Bull. Amer. Math. Soc. 78 (1972) 262

[34] K Reidemeister, Automorphismen von Homotopiekettenringen, Math. Ann. 112 (1936) 586

[35] H Salomonsen, On the existence and classification of differential embeddings in the metastable range (1973)

[36] M Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967) 77

[37] F Wecken, Fixpunktklassen I, Math. Ann. 117 (1941) 659

Cité par Sources :