Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms
Geometry & topology, Tome 11 (2007) no. 2, pp. 889-937.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We investigate the representation theory of the polynomial core TSq of the quantum Teichmüller space of a punctured surface S. This is a purely algebraic object, closely related to the combinatorics of the simplicial complex of ideal cell decompositions of S. Our main result is that irreducible finite-dimensional representations of TSq are classified, up to finitely many choices, by group homomorphisms from the fundamental group π1(S) to the isometry group of the hyperbolic 3–space 3. We exploit this connection between algebra and hyperbolic geometry to exhibit invariants of diffeomorphisms of S.

DOI : 10.2140/gt.2007.11.889
Keywords: Quantum Teichmüller space, surface diffeomorphisms

Bonahon, Francis 1 ; Liu, Xiaobo 2

1 Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA
2 Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA
@article{GT_2007_11_2_a6,
     author = {Bonahon, Francis and Liu, Xiaobo},
     title = {Representations of the quantum {Teichm\"uller} space and invariants of surface diffeomorphisms},
     journal = {Geometry & topology},
     pages = {889--937},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2007},
     doi = {10.2140/gt.2007.11.889},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.889/}
}
TY  - JOUR
AU  - Bonahon, Francis
AU  - Liu, Xiaobo
TI  - Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms
JO  - Geometry & topology
PY  - 2007
SP  - 889
EP  - 937
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.889/
DO  - 10.2140/gt.2007.11.889
ID  - GT_2007_11_2_a6
ER  - 
%0 Journal Article
%A Bonahon, Francis
%A Liu, Xiaobo
%T Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms
%J Geometry & topology
%D 2007
%P 889-937
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.889/
%R 10.2140/gt.2007.11.889
%F GT_2007_11_2_a6
Bonahon, Francis; Liu, Xiaobo. Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. Geometry & topology, Tome 11 (2007) no. 2, pp. 889-937. doi : 10.2140/gt.2007.11.889. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.889/

[1] H Bai, A uniqueness property for the quantization of Teichmüller spaces

[2] H Bai, Quantum hyperbolic geometry in dimensions 2 and 3, PhD thesis, Univ. of Southern California (2006)

[3] H Bai, F Bonahon, X Liu, Local representations of the quantum Teichmüller space

[4] S Baseilhac, R Benedetti, QHI, 3–manifolds scissors congruence classes and the volume conjecture, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)" (editors T Ohtsuki, e al), Geom. Topol. Monogr. 4 (2002) 13

[5] S Baseilhac, R Benedetti, Quantum hyperbolic invariants of 3–manifolds with $\mathrm{ PSL}(2,\mathbb C)$-characters, Topology 43 (2004) 1373

[6] S Baseilhac, R Benedetti, Classical and quantum dilogarithmic invariants of flat $\mathrm{ PSL}(2,\mathbb C)$-bundles over 3–manifolds, Geom. Topol. 9 (2005) 493

[7] S Baseilhac, R Benedetti, Quantum hyperbolic geometry

[8] F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. $(6)$ 5 (1996) 233

[9] K A Brown, K R Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser (2002)

[10] D Bullock, C Frohman, J Kania-Bartoszyńska, Topological interpretations of lattice gauge field theory, Comm. Math. Phys. 198 (1998) 47

[11] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3

[12] L O Chekhov, V V Fock, Observables in 3D gravity and geodesic algebras, from: "Quantum groups and integrable systems (Prague, 2000)", Czechoslovak J. Phys. 50 (2000) 1201

[13] P M Cohn, Skew fields: Theory of general division rings, Encyclopedia of Mathematics and its Applications 57, Cambridge University Press (1995)

[14] A Fathi, F Laudenbach, V Poénaru, Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284

[15] V V Fock, Dual Teichmüller spaces

[16] V V Fock, L O Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999) 511

[17] V Fock, A Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) 1

[18] C Frohman, R Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000) 4877

[19] C Frohman, R Gelca, W Lofaro, The A-polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc. 354 (2002) 735

[20] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[21] R M Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995) 1409

[22] R M Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269

[23] R M Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105

[24] C Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer (1995)

[25] X Liu, The quantum Teichmüller space as a non-commutative algebraic object

[26] X Liu, Quantum hyperbolic invariants for diffeomorphisms of small surfaces

[27] G D Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press (1973)

[28] H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85

[29] H Murakami, J Murakami, M Okamoto, T Takata, Y Yokota, Kashaev's conjecture and the Chern–Simons invariants of knots and links, Experiment. Math. 11 (2002) 427

[30] J P Otal, Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque (1996)

[31] A Papadopoulos, R C Penner, The Weil–Petersson symplectic structure at Thurston's boundary, Trans. Amer. Math. Soc. 335 (1993) 891

[32] R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299

[33] R C Penner, Weil–Petersson volumes, J. Differential Geom. 35 (1992) 559

[34] J H Przytycki, Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91

[35] J H Przytycki, A S Sikora, On skein algebras and $\mathrm{Sl}_2(\mathbb{C})$–character varieties, Topology 39 (2000) 115

[36] Y Sözen, F Bonahon, The Weil–Petersson and Thurston symplectic forms, Duke Math. J. 108 (2001) 581

[37] W P Thurston, The topology and geomety of 3–manifolds, Princeton Mathematical Series

[38] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 357

[39] W P Thurston, Minimal stretch maps between hyperbolic surfaces, unpublished preprint (1986)

[40] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

[41] W P Thurston, Three-dimensional geometry and topology Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)

[42] V G Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. $(4)$ 24 (1991) 635

[43] Y Yokota, On the volume conjecture for hyperbolic knots

[44] Y Yokota, On the potential functions for the hyperbolic structures of a knot complement, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)" (editors T Ohtsuki, e al), Geom. Topol. Monogr. 4 (2002) 303

Cité par Sources :