Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We investigate the representation theory of the polynomial core of the quantum Teichmüller space of a punctured surface . This is a purely algebraic object, closely related to the combinatorics of the simplicial complex of ideal cell decompositions of . Our main result is that irreducible finite-dimensional representations of are classified, up to finitely many choices, by group homomorphisms from the fundamental group to the isometry group of the hyperbolic 3–space . We exploit this connection between algebra and hyperbolic geometry to exhibit invariants of diffeomorphisms of .
Bonahon, Francis 1 ; Liu, Xiaobo 2
@article{GT_2007_11_2_a6, author = {Bonahon, Francis and Liu, Xiaobo}, title = {Representations of the quantum {Teichm\"uller} space and invariants of surface diffeomorphisms}, journal = {Geometry & topology}, pages = {889--937}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2007}, doi = {10.2140/gt.2007.11.889}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.889/} }
TY - JOUR AU - Bonahon, Francis AU - Liu, Xiaobo TI - Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms JO - Geometry & topology PY - 2007 SP - 889 EP - 937 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.889/ DO - 10.2140/gt.2007.11.889 ID - GT_2007_11_2_a6 ER -
%0 Journal Article %A Bonahon, Francis %A Liu, Xiaobo %T Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms %J Geometry & topology %D 2007 %P 889-937 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.889/ %R 10.2140/gt.2007.11.889 %F GT_2007_11_2_a6
Bonahon, Francis; Liu, Xiaobo. Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. Geometry & topology, Tome 11 (2007) no. 2, pp. 889-937. doi : 10.2140/gt.2007.11.889. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.889/
[1] A uniqueness property for the quantization of Teichmüller spaces
,[2] Quantum hyperbolic geometry in dimensions 2 and 3, PhD thesis, Univ. of Southern California (2006)
,[3] Local representations of the quantum Teichmüller space
, , ,[4] QHI, 3–manifolds scissors congruence classes and the volume conjecture, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)" (editors T Ohtsuki, e al), Geom. Topol. Monogr. 4 (2002) 13
, ,[5] Quantum hyperbolic invariants of 3–manifolds with $\mathrm{ PSL}(2,\mathbb C)$-characters, Topology 43 (2004) 1373
, ,[6] Classical and quantum dilogarithmic invariants of flat $\mathrm{ PSL}(2,\mathbb C)$-bundles over 3–manifolds, Geom. Topol. 9 (2005) 493
, ,[7] Quantum hyperbolic geometry
, ,[8] Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. $(6)$ 5 (1996) 233
,[9] Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser (2002)
, ,[10] Topological interpretations of lattice gauge field theory, Comm. Math. Phys. 198 (1998) 47
, , ,[11] Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3
, , ,[12] Observables in 3D gravity and geodesic algebras, from: "Quantum groups and integrable systems (Prague, 2000)", Czechoslovak J. Phys. 50 (2000) 1201
, ,[13] Skew fields: Theory of general division rings, Encyclopedia of Mathematics and its Applications 57, Cambridge University Press (1995)
,[14] Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284
, , ,[15] Dual Teichmüller spaces
,[16] Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999) 511
, ,[17] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) 1
, ,[18] Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000) 4877
, ,[19] The A-polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc. 354 (2002) 735
, , ,[20] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157
,[21] A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995) 1409
,[22] The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269
,[23] Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105
,[24] Quantum groups, Graduate Texts in Mathematics 155, Springer (1995)
,[25] The quantum Teichmüller space as a non-commutative algebraic object
,[26] Quantum hyperbolic invariants for diffeomorphisms of small surfaces
,[27] Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press (1973)
,[28] The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85
, ,[29] Kashaev's conjecture and the Chern–Simons invariants of knots and links, Experiment. Math. 11 (2002) 427
, , , , ,[30] Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque (1996)
,[31] The Weil–Petersson symplectic structure at Thurston's boundary, Trans. Amer. Math. Soc. 335 (1993) 891
, ,[32] The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299
,[33] Weil–Petersson volumes, J. Differential Geom. 35 (1992) 559
,[34] Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91
,[35] On skein algebras and $\mathrm{Sl}_2(\mathbb{C})$–character varieties, Topology 39 (2000) 115
, ,[36] The Weil–Petersson and Thurston symplectic forms, Duke Math. J. 108 (2001) 581
, ,[37] The topology and geomety of 3–manifolds, Princeton Mathematical Series
,[38] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 357
,[39] Minimal stretch maps between hyperbolic surfaces, unpublished preprint (1986)
,[40] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417
,[41] Three-dimensional geometry and topology Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)
,[42] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. $(4)$ 24 (1991) 635
,[43] On the volume conjecture for hyperbolic knots
,[44] On the potential functions for the hyperbolic structures of a knot complement, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)" (editors T Ohtsuki, e al), Geom. Topol. Monogr. 4 (2002) 303
,Cité par Sources :