Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study compact Riemannian manifolds for which the light from any given point can be shaded away from any other point by finitely many point shades in . Compact flat Riemannian manifolds are known to have this finite blocking property. We conjecture that amongst compact Riemannian manifolds this finite blocking property characterizes the flat metrics. Using entropy considerations, we verify this conjecture amongst metrics with nonpositive sectional curvatures. Using the same approach, K Burns and E Gutkin have independently obtained this result. Additionally, we show that compact quotients of Euclidean buildings have the finite blocking property.
On the positive curvature side, we conjecture that compact Riemannian manifolds with the same blocking properties as compact rank one symmetric spaces are necessarily isometric to a compact rank one symmetric space. We include some results providing evidence for this conjecture.
Lafont, Jean-François 1 ; Schmidt, Benjamin 2
@article{GT_2007_11_2_a5, author = {Lafont, Jean-Fran\c{c}ois and Schmidt, Benjamin}, title = {Blocking light in compact {Riemannian} manifolds}, journal = {Geometry & topology}, pages = {867--887}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2007}, doi = {10.2140/gt.2007.11.867}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.867/} }
TY - JOUR AU - Lafont, Jean-François AU - Schmidt, Benjamin TI - Blocking light in compact Riemannian manifolds JO - Geometry & topology PY - 2007 SP - 867 EP - 887 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.867/ DO - 10.2140/gt.2007.11.867 ID - GT_2007_11_2_a5 ER -
Lafont, Jean-François; Schmidt, Benjamin. Blocking light in compact Riemannian manifolds. Geometry & topology, Tome 11 (2007) no. 2, pp. 867-887. doi : 10.2140/gt.2007.11.867. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.867/
[1] Lectures on geodesics in Riemannian geometry, Tata Institute of Fundamental Research Lectures on Mathematics 33 (1965)
,[2] Manifolds all of whose geodesics are closed, Ergebnisse series 93, Springer (1978)
,[3] Buildings, Springer Monographs in Mathematics, Springer (1998)
,[4] Growth of the number of geodesics between points and insecurity for Riemannian manifolds
, ,[5] Buildings are $\mathrm{CAT}(0)$, from: "Geometry and cohomology in group theory (Durham, 1994)", London Math. Soc. Lecture Note Ser. 252, Cambridge Univ. Press (1998) 108
,[6] Riemannian geometry, Mathematics: Theory Applications, Birkhäuser (1992)
,[7] Zadaqi Leningradskih Matematitcheskih Olimpiad (Leningrad 1990)
,[8] Auf Wiedersehensflächen, Ann. of Math. $(2)$ 78 (1963) 289
,[9] Blocking of billiard orbits and security for polygons and flat surfaces, Geom. Funct. Anal. 15 (2005) 83
,[10] Insecure configurations in lattice translation surfaces, with applications to polygonal billiards, Discrete Contin. Dyn. Syst. 16 (2006) 367
,[11] Blocking of orbits and the phenomenon of (in)security for the billiard in polygons and flat surfaces
,[12] Connecting geodesics and security of configurations in compact locally symmetric spaces, Geom. Dedicata 118 (2006) 185
, ,[13] Polygonal billiards with small obstacles, J. Statist. Phys. 90 (1998) 453
, ,[14] Spaces without conjugate points and with fundamental group of polynomial growth, Algebra i Analiz 16 (2004) 69
,[15] On the topological entropy of geodesic flows, J. Differential Geom. 45 (1997) 74
,[16] A counter-example to the theorem of Hiemer and Snurnikov, J. Statist. Phys. 114 (2004) 1619
,[17] Finite blocking versus pure periodicity
,[18] On the finite blocking property, Ann. Inst. Fourier (Grenoble) 55 (2005) 1195
,[19] A homological condition for a dynamical and illuminatory classification of torus branched coverings
,[20] The length of the shortest closed geodesic on a 2-dimensional sphere, Int. Math. Res. Not. (2002) 1211
, ,[21] Formulas for the entropy of the geodesic flow on a compact Riemannian manifold without conjugate points, Mat. Zametki 24 (1978) 553, 591
,[22] Filling radius and short closed geodesics of the 2-sphere, Bull. Soc. Math. France 132 (2004) 105
,[23] Integral geometry in general spaces, from: "Proceedings of the ICM (Cambridge, MA, 1950) Vol. 1", Amer. Math. Soc. (1952) 483
,[24] Homologie singulière des espaces fibrés. Applications, Ann. of Math. $(2)$ 54 (1951) 425
,[25] The conjugate locus of a Riemannian manifold, Amer. J. Math. 87 (1965) 575
,[26] Conjugate loci of constant order, Ann. of Math. $(2)$ 86 (1967) 192
,[27] Ueber Flächen mit Scharen geschlossener geodätischer Linien, Math. Ann. 57 (1903) 108
,Cité par Sources :