Filling invariants of systolic complexes and groups
Geometry & topology, Tome 11 (2007) no. 2, pp. 727-758.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Systolic complexes are simplicial analogues of nonpositively curved spaces. Their theory seems to be largely parallel to that of CAT(0) cubical complexes.

We study the filling radius of spherical cycles in systolic complexes, and obtain several corollaries. We show that a systolic group can not contain the fundamental group of a nonpositively curved Riemannian manifold of dimension strictly greater than 2, although there exist word hyperbolic systolic groups of arbitrary cohomological dimension.

We show that if a systolic group splits as a direct product, then both factors are virtually free. We also show that systolic groups satisfy linear isoperimetric inequality in dimension 2.

DOI : 10.2140/gt.2007.11.727
Keywords: systolic complex, systolic group, filling radius, word-hyperbolic group, asymptotic invariant

Januszkiewicz, Tadeusz 1 ; Świątkowski, Jacek 2

1 Department of Mathematics, The Ohio State University, 231 W 18th Ave, Columbus, OH 43210, USA, and the Mathematical Institute of Polish Academy of Sciences
2 Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
@article{GT_2007_11_2_a2,
     author = {Januszkiewicz, Tadeusz and \'Swi\k{a}tkowski, Jacek},
     title = {Filling invariants of systolic complexes and groups},
     journal = {Geometry & topology},
     pages = {727--758},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2007},
     doi = {10.2140/gt.2007.11.727},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.727/}
}
TY  - JOUR
AU  - Januszkiewicz, Tadeusz
AU  - Świątkowski, Jacek
TI  - Filling invariants of systolic complexes and groups
JO  - Geometry & topology
PY  - 2007
SP  - 727
EP  - 758
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.727/
DO  - 10.2140/gt.2007.11.727
ID  - GT_2007_11_2_a2
ER  - 
%0 Journal Article
%A Januszkiewicz, Tadeusz
%A Świątkowski, Jacek
%T Filling invariants of systolic complexes and groups
%J Geometry & topology
%D 2007
%P 727-758
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.727/
%R 10.2140/gt.2007.11.727
%F GT_2007_11_2_a2
Januszkiewicz, Tadeusz; Świątkowski, Jacek. Filling invariants of systolic complexes and groups. Geometry & topology, Tome 11 (2007) no. 2, pp. 727-758. doi : 10.2140/gt.2007.11.727. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.727/

[1] M Bestvina, Questions in Geometric Group Theory

[2] M Bestvina, G Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469

[3] C Champetier, L'espace des groupes de type fini, Topology 39 (2000) 657

[4] R J Daverman, Hereditarily aspherical compacta and cell-like maps, Topology Appl. 41 (1991) 247

[5] R J Daverman, A N Dranishnikov, Cell-like maps and aspherical compacta, Illinois J. Math. 40 (1996) 77

[6] M W Davis, T Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347

[7] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publishers (1992)

[8] K Fujiwara, K Whyte, A note on spaces of asymptotic dimension one

[9] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[10] F Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71 (2003)

[11] T Januszkiewicz, J Światkowski, Hyperbolic Coxeter groups of large dimension, Comment. Math. Helv. 78 (2003) 555

[12] T Januszkiewicz, J Światkowski, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. (2006) 1

[13] P Nowak, On exactness and isoperimetric profiles of discrete groups, J. Functional Analysis 243 (2007) 323

[14] D Osajda, Ideal boundary of 7-systolic complexes and groups, submitted

[15] D Osajda, Connectedness at infinity of systolic complexes and groups, Groups, Geometry and Dynamics 1 (2007) 183

[16] J Roe, Lectures on coarse geometry, University Lecture Series 31, American Mathematical Society (2003)

[17] J Światkowski, On the asymptotic homological dimension of hyperbolic groups, Bull. London Math. Soc. 27 (1995) 209

[18] D Wise, Sixtolic complexes and their fundamental groups, in preparation

Cité par Sources :