Holomorphic generating functions for invariants counting coherent sheaves on Calabi–Yau 3–folds
Geometry & topology, Tome 11 (2007) no. 2, pp. 667-725.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a Calabi–Yau 3–fold, T = Db(coh(X)) the derived category of coherent sheaves on X, and Stab(T ) the complex manifold of Bridgeland stability conditions on T. It is conjectured that one can define invariants Jα(Z,P) for (Z,P) Stab(T ) and α K(T ) generalizing Donaldson–Thomas invariants, which “count” (Z,P)–semistable (complexes of) coherent sheaves on X, and whose transformation law under change of (Z,P) is known.

This paper explains how to combine such invariants Jα(Z,P), if they exist, into a family of holomorphic generating functions Fα: Stab(T ) for α K(T ). Surprisingly, requiring the Fα to be continuous and holomorphic determines them essentially uniquely, and implies they satisfy a p.d.e., which can be interpreted as the flatness of a connection over Stab(T ) with values in an infinite-dimensional Lie algebra .

The author believes that underlying this mathematics there should be some new physics, in String Theory and Mirror Symmetry. String Theorists are invited to work out and explain this new physics.

DOI : 10.2140/gt.2007.11.667
Keywords: generating function, stability condition, coherent sheaf, Calabi–Yau 3–fold, Donaldson–Thomas invariant, moduli space, mirror symmetry

Joyce, Dominic 1

1 The Mathematical Institute, 24-29 St. Giles, Oxford, OX1 3LB, UK
@article{GT_2007_11_2_a1,
     author = {Joyce, Dominic},
     title = {Holomorphic generating functions for invariants counting coherent sheaves on {Calabi{\textendash}Yau} 3{\textendash}folds},
     journal = {Geometry & topology},
     pages = {667--725},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2007},
     doi = {10.2140/gt.2007.11.667},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.667/}
}
TY  - JOUR
AU  - Joyce, Dominic
TI  - Holomorphic generating functions for invariants counting coherent sheaves on Calabi–Yau 3–folds
JO  - Geometry & topology
PY  - 2007
SP  - 667
EP  - 725
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.667/
DO  - 10.2140/gt.2007.11.667
ID  - GT_2007_11_2_a1
ER  - 
%0 Journal Article
%A Joyce, Dominic
%T Holomorphic generating functions for invariants counting coherent sheaves on Calabi–Yau 3–folds
%J Geometry & topology
%D 2007
%P 667-725
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.667/
%R 10.2140/gt.2007.11.667
%F GT_2007_11_2_a1
Joyce, Dominic. Holomorphic generating functions for invariants counting coherent sheaves on Calabi–Yau 3–folds. Geometry & topology, Tome 11 (2007) no. 2, pp. 667-725. doi : 10.2140/gt.2007.11.667. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.667/

[1] M Bershadsky, S Cecotti, H Ooguri, C Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279

[2] M Bershadsky, S Cecotti, H Ooguri, C Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994) 311

[3] T Bridgeland, in preparation

[4] T Bridgeland, Stability conditions on triangulated categories, to appear in Ann. of Math. $(2)$

[5] T Bridgeland, Derived categories of coherent sheaves, from: "Proceedings of the International Congress of Mathematicians, Vol. 2 (Madrid, 2006)" (editors M Sanz-Solé, J Soria, J Varona, J Verdera) (2007) 563

[6] S K Donaldson, R P Thomas, Gauge theory in higher dimensions, from: "The geometric universe (Oxford, 1996)", Oxford Univ. Press (1998) 31

[7] S I Gelfand, Y I Manin, Methods of homological algebra, Springer Monographs in Mathematics, Springer (2003)

[8] A Goncharov, Multiple polylogarithms and mixed Tate motives

[9] A L Gorodentsev, S A Kuleshov, A N Rudakov, $t$-stabilities and $t$-structures on triangulated categories, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004) 117

[10] D Joyce, Constructible functions on Artin stacks, J. London Math. Soc. $(2)$ 74 (2006) 583

[11] D Joyce, Motivic invariants of Artin stacks and ‘stack functions’, to appear in Q. J. Math.

[12] D Joyce, Configurations in abelian categories. I. Basic properties and moduli stacks, Adv. Math. 203 (2006) 194

[13] D Joyce, Configurations in abelian categories. II. Ringel–Hall algebras, Adv. Math. 210 (2007) 635

[14] D Joyce, Configurations in abelian categories. III. Stability conditions and identities, to appear in Adv. Math.

[15] D Joyce, Configurations in abelian categories. IV. Invariants and changing stability conditions

[16] M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)", Birkhäuser (1995) 120

[17] D Mcduff, D Salamon, $J$-holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)

[18] D Ramakrishnan, On the monodromy of higher logarithms, Proc. Amer. Math. Soc. 85 (1982) 596

[19] A Rudakov, Stability for an abelian category, J. Algebra 197 (1997) 231

[20] R P Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000) 367

[21] B Toën, Higher and derived stacks: a global overview

[22] B Toën, Derived Hall algebras, Duke Math. J. 135 (2006) 587

[23] E Witten, Quantum background independence in String Theory

Cité par Sources :