Algebraic topology of Calabi–Yau threefolds in toric varieties
Geometry & topology, Tome 11 (2007) no. 1, pp. 597-642.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the integral homology (including torsion), the topological K–theory, and the Hodge structure on cohomology of Calabi–Yau threefold hypersurfaces and semiample complete intersections in toric varieties associated with maximal projective triangulations of reflexive polytopes. The methods are purely topological.

DOI : 10.2140/gt.2007.11.597
Keywords: Calabi–Yau manifolds, oric varieties

Doran, Charles 1 ; Morgan, John W 2

1 Department of Mathematics, University of Washington, Seattle, Washington 98195, USA
2 Department of Mathematics, Columbia University, New York, New York 10027, USA
@article{GT_2007_11_1_a9,
     author = {Doran, Charles and Morgan, John W},
     title = {Algebraic topology of {Calabi{\textendash}Yau} threefolds in toric varieties},
     journal = {Geometry & topology},
     pages = {597--642},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2007},
     doi = {10.2140/gt.2007.11.597},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.597/}
}
TY  - JOUR
AU  - Doran, Charles
AU  - Morgan, John W
TI  - Algebraic topology of Calabi–Yau threefolds in toric varieties
JO  - Geometry & topology
PY  - 2007
SP  - 597
EP  - 642
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.597/
DO  - 10.2140/gt.2007.11.597
ID  - GT_2007_11_1_a9
ER  - 
%0 Journal Article
%A Doran, Charles
%A Morgan, John W
%T Algebraic topology of Calabi–Yau threefolds in toric varieties
%J Geometry & topology
%D 2007
%P 597-642
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.597/
%R 10.2140/gt.2007.11.597
%F GT_2007_11_1_a9
Doran, Charles; Morgan, John W. Algebraic topology of Calabi–Yau threefolds in toric varieties. Geometry & topology, Tome 11 (2007) no. 1, pp. 597-642. doi : 10.2140/gt.2007.11.597. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.597/

[1] V V Batyrev, Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994) 493

[2] V V Batyrev, L A Borisov, On Calabi–Yau complete intersections in toric varieties, from: "Higher-dimensional complex varieties (Trento, 1994)", de Gruyter (1996) 39

[3] V V Batyrev, M M Kreuzer, Integral cohomology and mirror symmetry for Calabi–Yau 3–folds, from: "Mirror Symmetry V: Proceedings of the BIRS Workshop on Calabi-Yau Varieties and Mirror Symmetry (December 2003)", AMS/IP Stud. Adv. Math. 38 (2006) 255

[4] D A Cox, S Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs 68, Amer. Math. Soc. (1999)

[5] V I Danilov, A G Khovanskiĭ, Newton polyhedra and an algorithm for calculating Hodge–Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 925

[6] P Deligne, Théorie de Hodge III, Inst. Hautes Études Sci. Publ. Math. (1974) 5

[7] C F Doran, J W Morgan, Mirror symmetry and integral variations of Hodge structure underlying one parameter families of Calabi–Yau threefolds, from: "Mirror Symmetry V: Proceedings of the BIRS Workshop on Calabi-Yau Varieties and Mirror Symmetry (December 2003)", AMS/IP Stud. Adv. Math. 38 (2006) 517

[8] W Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press (1993)

[9] I M Gel’Fand, M M Kapranov, A V Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory Applications, Birkhäuser (1994)

[10] A G Khovanskiĭ, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978) 51

[11] M Kreuzer, H Skarke, Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 (2000) 1209

[12] A R Mavlyutov, Semiample hypersurfaces in toric varieties, Duke Math. J. 101 (2000) 85

Cité par Sources :