Extending homeomorphisms of the circle to quasiconformal homeomorphisms of the disk
Geometry & topology, Tome 11 (2007) no. 1, pp. 517-595.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that it is not possible to extend, in a homomorphic fashion, each quasisymmetric homeomorphism of the circle to a quasiconformal homeomorphism of the disk.

DOI : 10.2140/gt.2007.11.517
Keywords: quasiconformal, quasisymmetric, circle, low-dimensional manifolds, group actions in low dimensions, quasiconformal mappings in the plane, maps of the circle, homeomorphisms and diffeomorphisms of planes and surfaces

Epstein, David 1 ; Markovic, Vladimir 2

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
2 Department of Mathematics, Universiy of Stony Brook, Stony Brook, NY 11794, USA
@article{GT_2007_11_1_a8,
     author = {Epstein, David and Markovic, Vladimir},
     title = {Extending homeomorphisms of the circle to quasiconformal homeomorphisms of the disk},
     journal = {Geometry & topology},
     pages = {517--595},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2007},
     doi = {10.2140/gt.2007.11.517},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.517/}
}
TY  - JOUR
AU  - Epstein, David
AU  - Markovic, Vladimir
TI  - Extending homeomorphisms of the circle to quasiconformal homeomorphisms of the disk
JO  - Geometry & topology
PY  - 2007
SP  - 517
EP  - 595
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.517/
DO  - 10.2140/gt.2007.11.517
ID  - GT_2007_11_1_a8
ER  - 
%0 Journal Article
%A Epstein, David
%A Markovic, Vladimir
%T Extending homeomorphisms of the circle to quasiconformal homeomorphisms of the disk
%J Geometry & topology
%D 2007
%P 517-595
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.517/
%R 10.2140/gt.2007.11.517
%F GT_2007_11_1_a8
Epstein, David; Markovic, Vladimir. Extending homeomorphisms of the circle to quasiconformal homeomorphisms of the disk. Geometry & topology, Tome 11 (2007) no. 1, pp. 517-595. doi : 10.2140/gt.2007.11.517. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.517/

[1] L V Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of C J Earle, Jr., Van Nostrand Mathematical Studies 10 (1966)

[2] A Beurling, L Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956) 125

[3] A Casson, D Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994) 441

[4] A Douady, C J Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986) 23

[5] D B A Epstein, Functors between tensored categories, Invent. Math. 1 (1966) 221

[6] D B A Epstein, A Marden, V Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. $(2)$ 159 (2004) 305

[7] D B A Epstein, W P Thurston, Transformation groups and natural bundles, Proc. London Math. Soc. (3) 38 (1979) 219

[8] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. $(2)$ 136 (1992) 447

[9] F P Gardiner, D P Sullivan, Symmetric structures on a closed curve, Amer. J. Math. 114 (1992) 683

[10] É Ghys, Prolongements des difféomorphismes de la sphère, Enseign. Math. $(2)$ 37 (1991) 45

[11] J A Giblin, On the structure of homeomorphism groups, PhD thesis, University of Warwick (2007)

[12] A Hinkkanen, Abelian and nondiscrete convergence groups on the circle, Trans. Amer. Math. Soc. 318 (1990) 87

[13] A Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc. 83 (1990)

[14] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. $(2)$ 117 (1983) 235

[15] B Knaster, C Kuratowski, Sur les ensembles connexes, Fund. Math. 2 (1922) 206

[16] V Markovic, Realization of the mapping class group by homeomorphisms

[17] V Markovic, Quasisymmetric groups, J. Amer. Math. Soc. 19 (2006) 673

[18] J N Mather, Integrability in codimension $1$, Comment. Math. Helv. 48 (1973) 195

[19] S Morita, Geometry of characteristic classes, Translations of Mathematical Monographs 199, Amer. Math. Soc. (2001)

[20] J F Plante, Subgroups of continuous groups acting differentiably on the half-line, Ann. Inst. Fourier (Grenoble) 34 (1984) 47

[21] D Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (Stony Brook, 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 465

[22] T Tsuboi, On the foliated products of class $C^1$, Ann. of Math. $(2)$ 130 (1989) 227

[23] P Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980) 73

[24] P Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1

Cité par Sources :