Weighted L2–cohomology of Coxeter groups
Geometry & topology, Tome 11 (2007) no. 1, pp. 47-138.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a Coxeter system (W,S) and a positive real multiparameter q, we study the “weighted L2–cohomology groups,” of a certain simplicial complex Σ associated to (W,S). These cohomology groups are Hilbert spaces, as well as modules over the Hecke algebra associated to (W,S) and the multiparameter q. They have a “von Neumann dimension” with respect to the associated “Hecke–von Neumann algebra” Nq. The dimension of the i–th cohomology group is denoted bq(Σ)i. It is a nonnegative real number which varies continuously with q. When q is integral, the bq(Σ)i are the usual L2–Betti numbers of buildings of type (W,S) and thickness q. For a certain range of q, we calculate these cohomology groups as modules over Nq and obtain explicit formulas for the bq(Σ)i. The range of q for which our calculations are valid depends on the region of convergence of the growth series of W. Within this range, we also prove a Decomposition Theorem for Nq, analogous to a theorem of L Solomon on the decomposition of the group algebra of a finite Coxeter group.

DOI : 10.2140/gt.2007.11.47
Keywords: Coxeter group, Hecke algebra, von Neumann algebra, building, $L^2$–cohomology

Davis, Michael W 1 ; Dymara, Jan 2 ; Januszkiewicz, Tadeusz 3 ; Okun, Boris 4

1 The Ohio State University, Department of Mathematics, 231 W 18th Ave, Columbus, Ohio 43210–1174, United States
2 Instytut Matematyczny, Uniwersytet Wrocławski, pl Grunwaldzki 2/4, 50-384 Wrocław, Poland
3 The Ohio State University, Department of Mathematics, 231 W 18th Ave, Columbus, Ohio 43210–1174, United States, Instytut Matematyczny Polskiej Akademii Nauk
4 University of Wisconsin–Milwaukee, Department of Mathematical Sciences, PO Box 413, Milwaukee WI 53201–0413, United States
@article{GT_2007_11_1_a1,
     author = {Davis, Michael W and Dymara, Jan and Januszkiewicz, Tadeusz and Okun, Boris},
     title = {Weighted {L2{\textendash}cohomology} of {Coxeter} groups},
     journal = {Geometry & topology},
     pages = {47--138},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2007},
     doi = {10.2140/gt.2007.11.47},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.47/}
}
TY  - JOUR
AU  - Davis, Michael W
AU  - Dymara, Jan
AU  - Januszkiewicz, Tadeusz
AU  - Okun, Boris
TI  - Weighted L2–cohomology of Coxeter groups
JO  - Geometry & topology
PY  - 2007
SP  - 47
EP  - 138
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.47/
DO  - 10.2140/gt.2007.11.47
ID  - GT_2007_11_1_a1
ER  - 
%0 Journal Article
%A Davis, Michael W
%A Dymara, Jan
%A Januszkiewicz, Tadeusz
%A Okun, Boris
%T Weighted L2–cohomology of Coxeter groups
%J Geometry & topology
%D 2007
%P 47-138
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.47/
%R 10.2140/gt.2007.11.47
%F GT_2007_11_1_a1
Davis, Michael W; Dymara, Jan; Januszkiewicz, Tadeusz; Okun, Boris. Weighted L2–cohomology of Coxeter groups. Geometry & topology, Tome 11 (2007) no. 1, pp. 47-138. doi : 10.2140/gt.2007.11.47. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.47/

[1] E M Andreev, Convex polyhedra in Lobačevskiĭ spaces, Mat. Sb. $($N.S.$)$ 81 (123) (1970) 445

[2] E M Andreev, Convex polyhedra of finite volume in Lobačevskiĭ space, Mat. Sb. $($N.S.$)$ 83 (125) (1970) 256

[3] D Boros, $\ell^2$-homology of low dimensional buildings, PhD thesis, The Ohio State University (2003)

[4] N Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer (2002)

[5] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999)

[6] A Brøndsted, An introduction to convex polytopes, Graduate Texts in Mathematics 90, Springer (1983)

[7] K S Brown, Buildings, Springer (1989)

[8] E L Bueler, The heat kernel weighted Hodge Laplacian on noncompact manifolds, Trans. Amer. Math. Soc. 351 (1999) 683

[9] R Charney, M Davis, Reciprocity of growth functions of Coxeter groups, Geom. Dedicata 39 (1991) 373

[10] J Cheeger, M Gromov, Bounds on the von Neumann dimension of $L^2$-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985) 1

[11] J Cheeger, M Gromov, $L_2$-cohomology and group cohomology, Topology 25 (1986) 189

[12] M W Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. $(2)$ 117 (1983) 293

[13] M W Davis, The homology of a space on which a reflection group acts, Duke Math. J. 55 (1987) 97

[14] M W Davis, Buildings are $\mathrm{CAT}(0)$, from: "Geometry and cohomology in group theory (Durham, 1994)", London Math. Soc. Lecture Note Ser. 252, Cambridge Univ. Press (1998) 108

[15] M W Davis, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998) 297

[16] M W Davis, Nonpositive curvature and reflection groups, from: "Handbook of geometric topology", North-Holland (2002) 373

[17] M W Davis, The Geometry and Topology of Coxeter Groups, London Math. Soc. Monograph Series, Princeton Univ. Press (in press)

[18] M W Davis, J Dymara, T Januszkiewicz, B Okun, Cohomology of Coxeter groups with group ring coefficients. II, Algebr. Geom. Topol. 6 (2006) 1289

[19] M W Davis, I J Leary, The $l^2$-cohomology of Artin groups, J. London Math. Soc. $(2)$ 68 (2003) 493

[20] M W Davis, J Meier, The topology at infinity of Coxeter groups and buildings, Comment. Math. Helv. 77 (2002) 746

[21] M W Davis, B Okun, Vanishing theorems and conjectures for the $\ell^2$-homology of right-angled Coxeter groups, Geom. Topol. 5 (2001) 7

[22] M W Davis, B Okun, $l^2$-homology of right-angled Coxeter groups based on barycentric subdivisions, Topology Appl. 140 (2004) 197

[23] J Dixmier, Les $C_{*}$–algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Cie, Éditeur-Imprimeur, Paris (1964)

[24] J Dixmier, von Neumann algebras, North-Holland Mathematical Library 27, North-Holland Publishing Co. (1981)

[25] J Dodziuk, de Rham-Hodge theory for $L^{2}$-cohomology of infinite coverings, Topology 16 (1977) 157

[26] J Dymara, $L^2$-cohomology of buildings with fundamental class, Proc. Amer. Math. Soc. 132 (2004) 1839

[27] J Dymara, Thin buildings, Geom. Topol. 10 (2006) 667

[28] J Dymara, T Januszkiewicz, Cohomology of buildings and their automorphism groups, Invent. Math. 150 (2002) 579

[29] B Eckmann, Introduction to $l_2$-methods in topology: reduced $l_2$-homology, harmonic chains, $l_2$-Betti numbers, Israel J. Math. 117 (2000) 183

[30] Ś R Gal, Real root conjecture fails for five- and higher-dimensional spheres, Discrete Comput. Geom. 34 (2005) 269

[31] C Gonciulea, Virtual epimorphisms of Coxeter groups onto free groups, PhD thesis, The Ohio State University (2000)

[32] D Kazhdan, G Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979) 165

[33] W Lück, $L^2$–invariants: theory and applications to geometry and $K$–theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer (2002)

[34] G Lusztig, Left cells in Weyl groups, from: "Lie group representations, I (College Park, Md., 1982/1983)", Lecture Notes in Math. 1024, Springer (1983) 99

[35] G A Margulis, È B Vinberg, Some linear groups virtually having a free quotient, J. Lie Theory 10 (2000) 171

[36] G Moussong, Hyperbolic Coxeter groups, PhD thesis, The Ohio State University (1998)

[37] M Ronan, Lectures on buildings, Perspectives in Mathematics 7, Academic Press (1989)

[38] J P Serre, Cohomologie des groupes discrets, from: "Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970)", Princeton Univ. Press (1971)

[39] L Solomon, A decomposition of the group algebra of a finite Coxeter group, J. Algebra 9 (1968) 220

[40] R Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society 80, American Mathematical Society (1968) 108

[41] J Tits, Le problème des mots dans les groupes de Coxeter, from: "Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1", Academic Press (1969) 175

[42] C A Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press (1994)

Cité par Sources :