Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We apply Donaldson’s theorem on the intersection forms of definite 4–manifolds to characterize the lens spaces which smoothly bound rational homology 4–dimensional balls. Our result implies, in particular, that every smoothly slice 2–bridge knot is ribbon, proving the ribbon conjecture for 2–bridge knots.
Lisca, Paolo 1
@article{GT_2007_11_1_a6, author = {Lisca, Paolo}, title = {Lens spaces, rational balls and the ribbon conjecture}, journal = {Geometry & topology}, pages = {429--472}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2007}, doi = {10.2140/gt.2007.11.429}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.429/} }
Lisca, Paolo. Lens spaces, rational balls and the ribbon conjecture. Geometry & topology, Tome 11 (2007) no. 1, pp. 429-472. doi : 10.2140/gt.2007.11.429. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.429/
[1] Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter Co. (1985)
, ,[2] Cobordism of classical knots, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 181
, ,[3] Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981) 23
, ,[4] The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397
,[5] Rational homology cobordisms of spherical space forms, Topology 26 (1987) 385
, ,[6] Algebraic surfaces with $k^*$–action, Acta Math. 138 (1977) 43
, ,[7] Rational homology spheres and the four-ball genus of knots, Adv. Math. 200 (2006) 196
, ,[8] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179
, ,[9] The geometry of continued fractions and the topology of surface singularities (2005)
,[10] Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974) 211
,[11] Exercises sur les noeuds rationnels (1975)
,Cité par Sources :