Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define and study a certain class of spaces which includes –completed classifying spaces of compact Lie groups, classifying spaces of –compact groups, and –completed classifying spaces of certain locally finite discrete groups. These spaces are determined by fusion and linking systems over “discrete –toral groups”—extensions of by finite –groups—in the same way that classifying spaces of –local finite groups as defined in our paper [The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003) 779–856] are determined by fusion and linking systems over finite –groups. We call these structures “–local compact groups”.
Broto, Carles 1 ; Levi, Ran 2 ; Oliver, Bob 3
@article{GT_2007_11_1_a5, author = {Broto, Carles and Levi, Ran and Oliver, Bob}, title = {Discrete models for the p{\textendash}local homotopy theory of compact {Lie} groups and p{\textendash}compact groups}, journal = {Geometry & topology}, pages = {315--427}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2007}, doi = {10.2140/gt.2007.11.315}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.315/} }
TY - JOUR AU - Broto, Carles AU - Levi, Ran AU - Oliver, Bob TI - Discrete models for the p–local homotopy theory of compact Lie groups and p–compact groups JO - Geometry & topology PY - 2007 SP - 315 EP - 427 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.315/ DO - 10.2140/gt.2007.11.315 ID - GT_2007_11_1_a5 ER -
%0 Journal Article %A Broto, Carles %A Levi, Ran %A Oliver, Bob %T Discrete models for the p–local homotopy theory of compact Lie groups and p–compact groups %J Geometry & topology %D 2007 %P 315-427 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.315/ %R 10.2140/gt.2007.11.315 %F GT_2007_11_1_a5
Broto, Carles; Levi, Ran; Oliver, Bob. Discrete models for the p–local homotopy theory of compact Lie groups and p–compact groups. Geometry & topology, Tome 11 (2007) no. 1, pp. 315-427. doi : 10.2140/gt.2007.11.315. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.315/
[1] Sylow intersections and fusion, J. Algebra 6 (1967) 222
,[2] Fusion in compact Lie groups, Quart. J. Math. Oxford Ser. $(2)$ 47 (1996) 261
,[3] Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972)
, ,[4] Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press (1972)
,[5] Classifying spaces of Kac-Moody groups, Math. Z. 240 (2002) 621
, ,[6] Homotopy equivalences of $p$-completed classifying spaces of finite groups, Invent. Math. 151 (2003) 611
, , ,[7] The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003) 779
, , ,[8] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)
,[9] Homology decompositions for $p$–compact groups, to appear in Adv. Math.
, , ,[10] Centric maps and realization of diagrams in the homotopy category, Proc. Amer. Math. Soc. 114 (1992) 575
, ,[11] Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. $(2)$ 139 (1994) 395
, ,[12] The center of a $p$-compact group, from: "The Čech centennial (Boston, 1993)", Contemp. Math. 181, Amer. Math. Soc. (1995) 119
, ,[13] The Segal conjecture for compact Lie groups, Topology 26 (1987) 1
,[14] Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press (1970)
,[15] Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer New York,, New York (1967)
, ,[16] Finite groups, Harper Row Publishers (1968)
,[17] Modules of topological spaces, applications to homotopy limits and $E_\infty$ structures, Arch. Math. $($Basel$)$ 59 (1992) 115
, ,[18] Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992) 113
, ,[19] Homotopy classification of self-maps of $BG$ via $G$-actions. I, Ann. of Math. (2) 135 (1992) 183
, , ,[20] Homotopy classification of self-maps of $BG$ via $G$-actions. II, Ann. of Math. $(2)$ 135 (1992) 227
, , ,[21] Homotopy theory of classifying spaces of compact Lie groups, from: "Algebraic topology and its applications", Math. Sci. Res. Inst. Publ. 27, Springer (1994) 81
, , ,[22] Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995) 99
, , ,[23] Locally finite groups, North-Holland Mathematical Library 3, North-Holland Publishing Co. (1973)
, ,[24] Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1971)
,[25] Homotopy Lie groups, Bull. Amer. Math. Soc. $($N.S.$)$ 32 (1995) 413
,[26] Higher limits via Steinberg representations, Comm. Algebra 22 (1994) 1381
,[27] Frobenius categories, J. Algebra 303 (2006) 309
,[28] Group theory. I, Grundlehren der Mathematischen Wissenschaften 247, Springer (1982)
,[29] Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Ergebnisse der Matematik und ihrer Grenzgebiete 76, Springer (1973)
,[30] On maps from $\mathrm{holim} F$ to $\mathbb{Z}$, from: "Algebraic topology, Barcelona, 1986", Lecture Notes in Math. 1298, Springer (1987) 227
,Cité par Sources :