The signature of a fibre bundle is multiplicative mod 4
Geometry & topology, Tome 11 (2007) no. 1, pp. 251-314.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We express the signature modulo 4 of a closed, oriented, 4k–dimensional PL manifold as a linear combination of its Euler characteristic and the new absolute torsion invariant defined by Korzeniewski [Absolute Whitehead torsion, Geom. Topol. 11 (2007) 215–249]. Let F E B be a PL fibre bundle, where F, E and B are closed, connected, and compatibly oriented PL manifolds. We give a formula for the absolute torsion of the total space E in terms of the absolute torsion of the base and fibre, and then combine these two results to prove that the signature of E is congruent modulo 4 to the product of the signatures of F and B.

DOI : 10.2140/gt.2007.11.251
Keywords: signature, fibre bundle, multiplicative

Hambleton, Ian 1 ; Korzeniewski, Andrew 2 ; Ranicki, Andrew 2

1 Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
2 School of Mathematics, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom
@article{GT_2007_11_1_a4,
     author = {Hambleton, Ian and Korzeniewski, Andrew and Ranicki, Andrew},
     title = {The signature of a fibre bundle is multiplicative mod 4},
     journal = {Geometry & topology},
     pages = {251--314},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2007},
     doi = {10.2140/gt.2007.11.251},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.251/}
}
TY  - JOUR
AU  - Hambleton, Ian
AU  - Korzeniewski, Andrew
AU  - Ranicki, Andrew
TI  - The signature of a fibre bundle is multiplicative mod 4
JO  - Geometry & topology
PY  - 2007
SP  - 251
EP  - 314
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.251/
DO  - 10.2140/gt.2007.11.251
ID  - GT_2007_11_1_a4
ER  - 
%0 Journal Article
%A Hambleton, Ian
%A Korzeniewski, Andrew
%A Ranicki, Andrew
%T The signature of a fibre bundle is multiplicative mod 4
%J Geometry & topology
%D 2007
%P 251-314
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.251/
%R 10.2140/gt.2007.11.251
%F GT_2007_11_1_a4
Hambleton, Ian; Korzeniewski, Andrew; Ranicki, Andrew. The signature of a fibre bundle is multiplicative mod 4. Geometry & topology, Tome 11 (2007) no. 1, pp. 251-314. doi : 10.2140/gt.2007.11.251. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.251/

[1] D R Anderson, The Whitehead torsion of the total space of a fiber bundle, Topology 11 (1972) 179

[2] M F Atiyah, The signature of fibre-bundles, from: "Global Analysis (Papers in Honor of K. Kodaira)", Univ. Tokyo Press (1969) 73

[3] A J Casson, Generalisations and applications of block bundles, from: "The Hauptvermutung book", K–Monogr. Math. 1, Kluwer Acad. Publ. (1996) 33

[4] S S Chern, F Hirzebruch, J P Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957) 587

[5] H Endo, A construction of surface bundles over surfaces with non-zero signature, Osaka J. Math. 35 (1998) 915

[6] I Hambleton, A Ranicki, L Taylor, Round $L$–theory, J. Pure Appl. Algebra 47 (1987) 131

[7] F Hirzebruch, The signature of ramified coverings, from: "Global Analysis (Papers in Honor of K. Kodaira)", Univ. Tokyo Press (1969) 253

[8] F Hirzebruch, W D Neumann, S S Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics 4, Marcel Dekker (1971)

[9] S Klaus, P Teichner, Private communication (2003)

[10] K Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207

[11] A J Korzeniewski, Absolute Whitehead torsion, Geom. Topol. 11 (2007) 215

[12] W Lück, The transfer maps induced in the algebraic $K_0$– and $K_1$–groups by a fibration. I, Math. Scand. 59 (1986) 93

[13] W Lück, The transfer maps induced in the algebraic $K_0$– and $K_1$–groups by a fibration. II, J. Pure Appl. Algebra 45 (1987) 143

[14] W Lück, A Ranicki, Surgery obstructions of fibre bundles, J. Pure Appl. Algebra 81 (1992) 139

[15] S Maumary, Contributions à la théorie du type simple d'homotopie, Comment. Math. Helv. 44 (1969) 410

[16] W Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201 (1973) 239

[17] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358

[18] H J Munkholm, Whitehead torsion for PL fiber homotopy equivalences, from: "Algebraic topology, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978)", Lecture Notes in Math. 741, Springer (1979) 90

[19] W D Neumann, Multiplicativity of signature, J. Pure Appl. Algebra 13 (1978) 19

[20] E K Pedersen, Geometrically defined transfers, comparisons, Math. Z. 180 (1982) 535

[21] H Putz, Triangulation of fibre bundles, Canad. J. Math. 19 (1967) 499

[22] A Ranicki, The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. $(3)$ 40 (1980) 87

[23] A Ranicki, The algebraic theory of surgery. II. Applications to topology, Proc. London Math. Soc. $(3)$ 40 (1980) 193

[24] A Ranicki, The algebraic theory of torsion. I. Foundations, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math., Springer (1985) 199

[25] A Ranicki, The algebraic theory of torsion. II. Products, K–Theory 1 (1987) 115

[26] A Ranicki, Additive $L$–theory, K–Theory 3 (1989) 163

[27] H Seifert, W Threlfall, Seifert and Threlfall: a textbook of topology, Pure and Applied Mathematics 89, Academic Press (1980)

[28] C T C Wall, Surgery on compact manifolds, London Mathematical Society Monographs 1, Academic Press (1970)

[29] J H C Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950) 1

Cité par Sources :