Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We express the signature modulo 4 of a closed, oriented, –dimensional manifold as a linear combination of its Euler characteristic and the new absolute torsion invariant defined by Korzeniewski [Absolute Whitehead torsion, Geom. Topol. 11 (2007) 215–249]. Let be a fibre bundle, where , and are closed, connected, and compatibly oriented manifolds. We give a formula for the absolute torsion of the total space in terms of the absolute torsion of the base and fibre, and then combine these two results to prove that the signature of is congruent modulo 4 to the product of the signatures of and .
Hambleton, Ian 1 ; Korzeniewski, Andrew 2 ; Ranicki, Andrew 2
@article{GT_2007_11_1_a4, author = {Hambleton, Ian and Korzeniewski, Andrew and Ranicki, Andrew}, title = {The signature of a fibre bundle is multiplicative mod 4}, journal = {Geometry & topology}, pages = {251--314}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2007}, doi = {10.2140/gt.2007.11.251}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.251/} }
TY - JOUR AU - Hambleton, Ian AU - Korzeniewski, Andrew AU - Ranicki, Andrew TI - The signature of a fibre bundle is multiplicative mod 4 JO - Geometry & topology PY - 2007 SP - 251 EP - 314 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.251/ DO - 10.2140/gt.2007.11.251 ID - GT_2007_11_1_a4 ER -
%0 Journal Article %A Hambleton, Ian %A Korzeniewski, Andrew %A Ranicki, Andrew %T The signature of a fibre bundle is multiplicative mod 4 %J Geometry & topology %D 2007 %P 251-314 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.251/ %R 10.2140/gt.2007.11.251 %F GT_2007_11_1_a4
Hambleton, Ian; Korzeniewski, Andrew; Ranicki, Andrew. The signature of a fibre bundle is multiplicative mod 4. Geometry & topology, Tome 11 (2007) no. 1, pp. 251-314. doi : 10.2140/gt.2007.11.251. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.251/
[1] The Whitehead torsion of the total space of a fiber bundle, Topology 11 (1972) 179
,[2] The signature of fibre-bundles, from: "Global Analysis (Papers in Honor of K. Kodaira)", Univ. Tokyo Press (1969) 73
,[3] Generalisations and applications of block bundles, from: "The Hauptvermutung book", K–Monogr. Math. 1, Kluwer Acad. Publ. (1996) 33
,[4] On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957) 587
, , ,[5] A construction of surface bundles over surfaces with non-zero signature, Osaka J. Math. 35 (1998) 915
,[6] Round $L$–theory, J. Pure Appl. Algebra 47 (1987) 131
, , ,[7] The signature of ramified coverings, from: "Global Analysis (Papers in Honor of K. Kodaira)", Univ. Tokyo Press (1969) 253
,[8] Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics 4, Marcel Dekker (1971)
, , ,[9] Private communication (2003)
, ,[10] A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207
,[11] Absolute Whitehead torsion, Geom. Topol. 11 (2007) 215
,[12] The transfer maps induced in the algebraic $K_0$– and $K_1$–groups by a fibration. I, Math. Scand. 59 (1986) 93
,[13] The transfer maps induced in the algebraic $K_0$– and $K_1$–groups by a fibration. II, J. Pure Appl. Algebra 45 (1987) 143
,[14] Surgery obstructions of fibre bundles, J. Pure Appl. Algebra 81 (1992) 139
, ,[15] Contributions à la théorie du type simple d'homotopie, Comment. Math. Helv. 44 (1969) 410
,[16] Die Signatur von Flächenbündeln, Math. Ann. 201 (1973) 239
,[17] Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358
,[18] Whitehead torsion for PL fiber homotopy equivalences, from: "Algebraic topology, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978)", Lecture Notes in Math. 741, Springer (1979) 90
,[19] Multiplicativity of signature, J. Pure Appl. Algebra 13 (1978) 19
,[20] Geometrically defined transfers, comparisons, Math. Z. 180 (1982) 535
,[21] Triangulation of fibre bundles, Canad. J. Math. 19 (1967) 499
,[22] The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. $(3)$ 40 (1980) 87
,[23] The algebraic theory of surgery. II. Applications to topology, Proc. London Math. Soc. $(3)$ 40 (1980) 193
,[24] The algebraic theory of torsion. I. Foundations, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math., Springer (1985) 199
,[25] The algebraic theory of torsion. II. Products, K–Theory 1 (1987) 115
,[26] Additive $L$–theory, K–Theory 3 (1989) 163
,[27] Seifert and Threlfall: a textbook of topology, Pure and Applied Mathematics 89, Academic Press (1980)
, ,[28] Surgery on compact manifolds, London Mathematical Society Monographs 1, Academic Press (1970)
,[29] Simple homotopy types, Amer. J. Math. 72 (1950) 1
,Cité par Sources :