On combinatorial link Floer homology
Geometry & topology, Tome 11 (2007) no. 4, pp. 2339-2412.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Link Floer homology is an invariant for links defined using a suitable version of Lagrangian Floer homology. In an earlier paper, this invariant was given a combinatorial description with mod 2 coefficients. In the present paper, we give a self-contained presentation of the basic properties of link Floer homology, including an elementary proof of its invariance. We also fix signs for the differentials, so that the theory is defined with integer coefficients.

DOI : 10.2140/gt.2007.11.2339
Keywords: Floer homology

Manolescu, Ciprian 1 ; Ozsváth, Peter 1 ; Szabó, Zoltán 2 ; Thurston, Dylan P 3

1 Department of Mathematics, Columbia University, New York NY 10027, USA
2 Department of Mathematics, Princeton University, Princeton NJ 08544, USA
3 Department of Mathematics, Barnard College, Columbia University, New York NY 10027, USA
@article{GT_2007_11_4_a8,
     author = {Manolescu, Ciprian and Ozsv\'ath, Peter and Szab\'o, Zolt\'an and Thurston, Dylan P},
     title = {On combinatorial link {Floer} homology},
     journal = {Geometry & topology},
     pages = {2339--2412},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2007},
     doi = {10.2140/gt.2007.11.2339},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2339/}
}
TY  - JOUR
AU  - Manolescu, Ciprian
AU  - Ozsváth, Peter
AU  - Szabó, Zoltán
AU  - Thurston, Dylan P
TI  - On combinatorial link Floer homology
JO  - Geometry & topology
PY  - 2007
SP  - 2339
EP  - 2412
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2339/
DO  - 10.2140/gt.2007.11.2339
ID  - GT_2007_11_4_a8
ER  - 
%0 Journal Article
%A Manolescu, Ciprian
%A Ozsváth, Peter
%A Szabó, Zoltán
%A Thurston, Dylan P
%T On combinatorial link Floer homology
%J Geometry & topology
%D 2007
%P 2339-2412
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2339/
%R 10.2140/gt.2007.11.2339
%F GT_2007_11_4_a8
Manolescu, Ciprian; Ozsváth, Peter; Szabó, Zoltán; Thurston, Dylan P. On combinatorial link Floer homology. Geometry & topology, Tome 11 (2007) no. 4, pp. 2339-2412. doi : 10.2140/gt.2007.11.2339. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2339/

[1] J Baldwin, W Gillam, Computations of Heegaard-Floer knot homology

[2] P R Cromwell, Embedding knots and links in an open book. I. Basic properties, Topology Appl. 64 (1995) 37

[3] I A Dynnikov, Arc-presentations of links: monotonic simplification, Fund. Math. 190 (2006) 29

[4] A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513

[5] R H Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. $(2)$ 57 (1953) 547

[6] C. Manolescu, P Ozsváth, S. Sarkar, A combinatorial description of knot Floer homology

[7] J Mccleary, User's guide to spectral sequences, Mathematics Lecture Series 12, Publish or Perish (1985)

[8] L P Neuwirth, $\ast$ projections of knots, from: "Algebraic and differential topology—global differential geometry", Teubner-Texte Math. 70, Teubner (1984) 198

[9] P Ozsváth, Z Szabó, Holomorphic disks and link invariants

[10] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[11] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[12] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[13] P Ozsváth, D Thurston, Z Szabó, Transverse knots and combinatorial knot Floer homology, in preparation

[14] J A Rasmussen, Khovanov homology and the slice genus

[15] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[16] S. Sarkar, J. Wang, A combinatorial description of some Heegaard Floer homologies

[17] P H Schoute, Analytic treatment of the polytopes regularly derived from the regular polytopes, Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam 11 (1911) 1

Cité par Sources :