Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Link Floer homology is an invariant for links defined using a suitable version of Lagrangian Floer homology. In an earlier paper, this invariant was given a combinatorial description with mod 2 coefficients. In the present paper, we give a self-contained presentation of the basic properties of link Floer homology, including an elementary proof of its invariance. We also fix signs for the differentials, so that the theory is defined with integer coefficients.
Manolescu, Ciprian 1 ; Ozsváth, Peter 1 ; Szabó, Zoltán 2 ; Thurston, Dylan P 3
@article{GT_2007_11_4_a8, author = {Manolescu, Ciprian and Ozsv\'ath, Peter and Szab\'o, Zolt\'an and Thurston, Dylan P}, title = {On combinatorial link {Floer} homology}, journal = {Geometry & topology}, pages = {2339--2412}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2007}, doi = {10.2140/gt.2007.11.2339}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2339/} }
TY - JOUR AU - Manolescu, Ciprian AU - Ozsváth, Peter AU - Szabó, Zoltán AU - Thurston, Dylan P TI - On combinatorial link Floer homology JO - Geometry & topology PY - 2007 SP - 2339 EP - 2412 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2339/ DO - 10.2140/gt.2007.11.2339 ID - GT_2007_11_4_a8 ER -
%0 Journal Article %A Manolescu, Ciprian %A Ozsváth, Peter %A Szabó, Zoltán %A Thurston, Dylan P %T On combinatorial link Floer homology %J Geometry & topology %D 2007 %P 2339-2412 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2339/ %R 10.2140/gt.2007.11.2339 %F GT_2007_11_4_a8
Manolescu, Ciprian; Ozsváth, Peter; Szabó, Zoltán; Thurston, Dylan P. On combinatorial link Floer homology. Geometry & topology, Tome 11 (2007) no. 4, pp. 2339-2412. doi : 10.2140/gt.2007.11.2339. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2339/
[1] Computations of Heegaard-Floer knot homology
, ,[2] Embedding knots and links in an open book. I. Basic properties, Topology Appl. 64 (1995) 37
,[3] Arc-presentations of links: monotonic simplification, Fund. Math. 190 (2006) 29
,[4] Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513
,[5] Free differential calculus. I. Derivation in the free group ring, Ann. of Math. $(2)$ 57 (1953) 547
,[6] A combinatorial description of knot Floer homology
, , ,[7] User's guide to spectral sequences, Mathematics Lecture Series 12, Publish or Perish (1985)
,[8] $\ast$ projections of knots, from: "Algebraic and differential topology—global differential geometry", Teubner-Texte Math. 70, Teubner (1984) 198
,[9] Holomorphic disks and link invariants
, ,[10] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615
, ,[11] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58
, ,[12] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027
, ,[13] Transverse knots and combinatorial knot Floer homology, in preparation
, , ,[14] Khovanov homology and the slice genus
,[15] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[16] A combinatorial description of some Heegaard Floer homologies
, ,[17] Analytic treatment of the polytopes regularly derived from the regular polytopes, Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam 11 (1911) 1
,Cité par Sources :