On the virtual Betti numbers of arithmetic hyperbolic 3–manifolds
Geometry & topology, Tome 11 (2007) no. 4, pp. 2265-2276.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that closed arithmetic hyperbolic 3–manifolds with virtually positive first Betti number have infinite virtual first Betti number. As a consequence, such manifolds have large fundamental group.

DOI : 10.2140/gt.2007.11.2265
Keywords: virtual Betti number, large fundamental group

Cooper, Daryl 1 ; Long, Darren 1 ; Reid, Alan W 2

1 Department of Mathematics, University of California, Santa Barbara CA 93106, USA
2 Department of Mathematics, University of Texas, Austin TX 78712, USA
@article{GT_2007_11_4_a6,
     author = {Cooper, Daryl and Long, Darren and Reid, Alan W},
     title = {On the virtual {Betti} numbers of arithmetic hyperbolic 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {2265--2276},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2007},
     doi = {10.2140/gt.2007.11.2265},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2265/}
}
TY  - JOUR
AU  - Cooper, Daryl
AU  - Long, Darren
AU  - Reid, Alan W
TI  - On the virtual Betti numbers of arithmetic hyperbolic 3–manifolds
JO  - Geometry & topology
PY  - 2007
SP  - 2265
EP  - 2276
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2265/
DO  - 10.2140/gt.2007.11.2265
ID  - GT_2007_11_4_a6
ER  - 
%0 Journal Article
%A Cooper, Daryl
%A Long, Darren
%A Reid, Alan W
%T On the virtual Betti numbers of arithmetic hyperbolic 3–manifolds
%J Geometry & topology
%D 2007
%P 2265-2276
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2265/
%R 10.2140/gt.2007.11.2265
%F GT_2007_11_4_a6
Cooper, Daryl; Long, Darren; Reid, Alan W. On the virtual Betti numbers of arithmetic hyperbolic 3–manifolds. Geometry & topology, Tome 11 (2007) no. 4, pp. 2265-2276. doi : 10.2140/gt.2007.11.2265. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2265/

[1] I Agol, Virtual Betti numbers of symmetric spaces, preprint

[2] A Borel, Cohomologie de sous-groupes discrets et représentations de groupes semi-simples, from: "Colloque “Analyse et Topologie” en l'Honneur de Henri Cartan (Orsay, 1974)", Soc. Math. France (1976)

[3] D Cooper, D D Long, A W Reid, Essential closed surfaces in bounded $3$–manifolds, J. Amer. Math. Soc. 10 (1997) 553

[4] P Eberlein, Geodesic flows on negatively curved manifolds I, Ann. of Math. $(2)$ 95 (1972) 492

[5] J Hass, Surfaces minimizing area in their homology class and group actions on $3$–manifolds, Math. Z. 199 (1988) 501

[6] M Lackenby, D D Long, A W Reid, Covering spaces of arithmetic $3$–orbifolds, preprint

[7] C Maclachlan, A W Reid, The arithmetic of hyperbolic 3–manifolds, Graduate Texts in Mathematics 219, Springer (2003)

[8] A W Reid, The geometry and topology of arithmetic hyperbolic $3$–manifolds

[9] R Schoen, Estimates for stable minimal surfaces in three-dimensional manifolds, from: "Seminar on minimal submanifolds", Ann. of Math. Stud. 103, Princeton Univ. Press (1983) 111

[10] W P Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 (1986)

[11] T N Venkataramana, Virtual Betti numbers of compact locally symmetric spaces, preprint

Cité par Sources :