Automorphisms of 2–dimensional right-angled Artin groups
Geometry & topology, Tome 11 (2007) no. 4, pp. 2227-2264.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the outer automorphism group of a right-angled Artin group AΓ in the case where the defining graph Γ is connected and triangle-free. We give an algebraic description of Out(AΓ) in terms of maximal join subgraphs in Γ and prove that the Tits’ alternative holds for Out(AΓ). We construct an analogue of outer space for Out(AΓ) and prove that it is finite dimensional, contractible, and has a proper action of Out(AΓ). We show that Out(AΓ) has finite virtual cohomological dimension, give upper and lower bounds on this dimension and construct a spine for outer space realizing the most general upper bound.

DOI : 10.2140/gt.2007.11.2227
Keywords: right-angled Artin groups, outer automorphisms, outer space

Charney, Ruth 1 ; Crisp, John 2 ; Vogtmann, Karen 3

1 Department of Mathematics, Brandeis University, Waltham MA 02454-9110, USA
2 Institut de Mathematiques de Bourgogne, Université de Bourgogne, B P 47 870, 21078 Dijon Cedex, France
3 Department of Mathematics, Cornell University, Ithaca NY 14853-4201, USA
@article{GT_2007_11_4_a5,
     author = {Charney, Ruth and Crisp, John and Vogtmann, Karen},
     title = {Automorphisms of 2{\textendash}dimensional right-angled {Artin} groups},
     journal = {Geometry & topology},
     pages = {2227--2264},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2007},
     doi = {10.2140/gt.2007.11.2227},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2227/}
}
TY  - JOUR
AU  - Charney, Ruth
AU  - Crisp, John
AU  - Vogtmann, Karen
TI  - Automorphisms of 2–dimensional right-angled Artin groups
JO  - Geometry & topology
PY  - 2007
SP  - 2227
EP  - 2264
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2227/
DO  - 10.2140/gt.2007.11.2227
ID  - GT_2007_11_4_a5
ER  - 
%0 Journal Article
%A Charney, Ruth
%A Crisp, John
%A Vogtmann, Karen
%T Automorphisms of 2–dimensional right-angled Artin groups
%J Geometry & topology
%D 2007
%P 2227-2264
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2227/
%R 10.2140/gt.2007.11.2227
%F GT_2007_11_4_a5
Charney, Ruth; Crisp, John; Vogtmann, Karen. Automorphisms of 2–dimensional right-angled Artin groups. Geometry & topology, Tome 11 (2007) no. 4, pp. 2227-2264. doi : 10.2140/gt.2007.11.2227. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2227/

[1] A Abrams, Configuration spaces of colored graphs, Geom. Dedicata 92 (2002) 185

[2] J Behrstock, W Neumann, Quasi-isometric classification of graph manifold groups, to appear in Duke Math. J.

[3] M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445

[4] M Bestvina, M Feighn, M Handel, The Tits alternative for $\mathrm{Out}(F_n)$. I. Dynamics of exponentially-growing automorphisms, Ann. of Math. $(2)$ 151 (2000) 517

[5] M Bestvina, M Feighn, M Handel, The Tits alternative for $\mathrm{Out}(F_n)$. II. A Kolchin type theorem, Ann. of Math. $(2)$ 161 (2005) 1

[6] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1999)

[7] R Charney, An introduction to right-angled Artin groups, to appear in Geom. Dedicata

[8] D J Collins, Cohomological dimension and symmetric automorphisms of a free group, Comment. Math. Helv. 64 (1989) 44

[9] J Crisp, M Sageev, M Sapir, Surface subgroups of ight-angled Artin groups

[10] C B Croke, B Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000) 549

[11] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91

[12] R Ghrist, Configuration spaces and braid groups on graphs in robotics, from: "Knots, braids, and mapping class groups—papers dedicated to Joan S. Birman (New York, 1998)", AMS/IP Stud. Adv. Math. 24, Amer. Math. Soc. (2001) 29

[13] R Ghrist, V Peterson, The geometry and topology of reconfiguration, Adv. in Appl. Math. 38 (2007) 302

[14] E Godelle, Parabolic subgroups of Artin groups of type FC, Pacific J. Math. 208 (2003) 243

[15] V Guirardel, G Levitt, Deformation spaces of trees, Groups Geom. Dyn. 1 (2007) 135

[16] V Guirardel, G Levitt, The outer space of a free product, Proc. Lond. Math. Soc. $(3)$ 94 (2007) 695

[17] S Krstić, K Vogtmann, Equivariant outer space and automorphisms of free-by-finite groups, Comment. Math. Helv. 68 (1993) 216

[18] M R Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. $(2)$ 52 (1995) 318

[19] F Paulin, The Gromov topology on $\mathbb{R}$–trees, Topology Appl. 32 (1989) 197

[20] H Servatius, Automorphisms of graph groups, J. Algebra 126 (1989) 34

[21] R Skora, Deformations of length functions in groups, preprint (1989)

[22] J Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250

[23] K Vogtmann, Automorphisms of free groups and outer space, from: "Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000)" (2002) 1

Cité par Sources :