A class of non-fillable contact structures
Geometry & topology, Tome 11 (2007) no. 4, pp. 2203-2225.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A geometric obstruction, the so called “PS–structure”, for a contact structure to not being fillable has been found by Niederkrüger. This generalizes somehow the concept of overtwisted structure to dimensions higher than 3. This paper elaborates on the theory showing a big number of closed contact manifolds having a "PS–structure". So, they are the first examples of non-fillable high dimensional closed contact manifolds. In particular we show that S3 × jΣj, for g(Σj) 2, possesses this kind of contact structure and so any connected sum with those manifolds also does it.

DOI : 10.2140/gt.2007.11.2203
Keywords: contact structures, fillings

Presas, Francisco 1

1 Departamento de Matemáticas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
@article{GT_2007_11_4_a4,
     author = {Presas, Francisco},
     title = {A class of non-fillable contact structures},
     journal = {Geometry & topology},
     pages = {2203--2225},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2007},
     doi = {10.2140/gt.2007.11.2203},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2203/}
}
TY  - JOUR
AU  - Presas, Francisco
TI  - A class of non-fillable contact structures
JO  - Geometry & topology
PY  - 2007
SP  - 2203
EP  - 2225
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2203/
DO  - 10.2140/gt.2007.11.2203
ID  - GT_2007_11_4_a4
ER  - 
%0 Journal Article
%A Presas, Francisco
%T A class of non-fillable contact structures
%J Geometry & topology
%D 2007
%P 2203-2225
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2203/
%R 10.2140/gt.2007.11.2203
%F GT_2007_11_4_a4
Presas, Francisco. A class of non-fillable contact structures. Geometry & topology, Tome 11 (2007) no. 4, pp. 2203-2225. doi : 10.2140/gt.2007.11.2203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2203/

[1] F Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. (2002) 1571

[2] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623

[3] Y Eliashberg, Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29

[4] J B Etnyre, Lectures on open book decompositions and contact structures, from: "Floer homology, gauge theory, and low-dimensional topology", Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103

[5] H Geiges, Constructions of contact manifolds, Math. Proc. Cambridge Philos. Soc. 121 (1997) 455

[6] E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)", Higher Ed. Press (2002) 405

[7] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[8] J Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton University Press (1968)

[9] K Niederkrüger, The plastikstufe—a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006) 2473

[10] K Niederkrüger, O Van Koert, Every contact manifold can be given a non-fillable contact structure,

[11] P Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential Geom. 52 (1999) 145

Cité par Sources :