Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let denote a compact, oriented 3–dimensional manifold and let denote a contact 1–form on ; thus is nowhere zero. This article proves that the vector field that generates the kernel of has a closed integral curve.
Taubes, Clifford Henry 1
@article{GT_2007_11_4_a3, author = {Taubes, Clifford Henry}, title = {The {Seiberg{\textendash}Witten} equations and the {Weinstein} conjecture}, journal = {Geometry & topology}, pages = {2117--2202}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2007}, doi = {10.2140/gt.2007.11.2117}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2117/} }
TY - JOUR AU - Taubes, Clifford Henry TI - The Seiberg–Witten equations and the Weinstein conjecture JO - Geometry & topology PY - 2007 SP - 2117 EP - 2202 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2117/ DO - 10.2140/gt.2007.11.2117 ID - GT_2007_11_4_a3 ER -
Taubes, Clifford Henry. The Seiberg–Witten equations and the Weinstein conjecture. Geometry & topology, Tome 11 (2007) no. 4, pp. 2117-2202. doi : 10.2140/gt.2007.11.2117. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2117/
[1] The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005) 771
, , ,[2] Le spectre d'une variété riemannienne, Lecture Notes in Mathematics 194, Springer (1971)
, , ,[3] Heat kernels and Dirac operators, Grundlehren Text Editions, Springer (2004)
, , ,[4] Pseudo-holomorphic curves and the Weinstein conjecture, Comm. Anal. Geom. 8 (2000) 115
,[5] Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56 (1981) 327
, ,[6] Reeb vector fields and open book decompositions I: the periodic case, preprint (2005)
, ,[7] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[8] Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006) 1749
,[9] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[10] Dynamics, topology, and holomorphic curves, from: "Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998)" (1998) 255
,[11] Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35
,[12] Holomorphic curves and real three-dimensional dynamics, Geom. Funct. Anal. (2000) 674
,[13] The topology and geometry of contact structures in dimension three, from: "International Congress of Mathematicians. Vol. II", Eur. Math. Soc., Zürich (2006) 705
,[14] Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169
, ,[15] Vortices and monopoles, Progress in Physics 2, Birkhäuser (1980)
, ,[16] Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften 132, Springer New York, New York (1966)
,[17] Monopoles and Three-Manifolds, New Mathematical Monographs 10, Cambridge University Press (2007) 770
, ,[18] Diffusion process in Riemannian geometry, Uspekhi Mat. Nauk 30 (1975) 1
,[19] Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966)
,[20] Floer mini-max theory, the Cerf diagram, and the spectral invariants
,[21] Geodesics and approximate heat kernels
,[22] On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419
,[23] Complex powers of an elliptic operator, from: "Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966)", Amer. Math. Soc. (1967) 288
,[24] An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965) 861
,[25] Asymptotic spectral flow for Dirac operators, to appear in Commun. Analysis and Geometry
,[26] The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221
,[27] $\mathrm{Gr}{\Rightarrow}\mathrm{SW}$: from pseudo-holomorphic curves to Seiberg–Witten solutions, J. Differential Geom. 51 (1999) 203
,[28] $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, from: "Seiberg Witten and Gromov invariants for symplectic 4-manifolds" (editor C H Taubes), First Int. Press Lect. Ser. 2, Int. Press, Somerville, MA (2000) 1
,[29] Seiberg Witten and Gromov invariants for symplectic 4—manifolds, First International Press Lecture Series 2, International Press (2000)
,[30] On the hypotheses of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979) 353
,Cité par Sources :