The Seiberg–Witten equations and the Weinstein conjecture
Geometry & topology, Tome 11 (2007) no. 4, pp. 2117-2202.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M denote a compact, oriented 3–dimensional manifold and let a denote a contact 1–form on M; thus ada is nowhere zero. This article proves that the vector field that generates the kernel of da has a closed integral curve.

DOI : 10.2140/gt.2007.11.2117
Keywords: Weinstein conjecture, vector field, contact form, 3-manifold

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge MA 02133
@article{GT_2007_11_4_a3,
     author = {Taubes, Clifford Henry},
     title = {The {Seiberg{\textendash}Witten} equations and the {Weinstein} conjecture},
     journal = {Geometry & topology},
     pages = {2117--2202},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2007},
     doi = {10.2140/gt.2007.11.2117},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2117/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - The Seiberg–Witten equations and the Weinstein conjecture
JO  - Geometry & topology
PY  - 2007
SP  - 2117
EP  - 2202
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2117/
DO  - 10.2140/gt.2007.11.2117
ID  - GT_2007_11_4_a3
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T The Seiberg–Witten equations and the Weinstein conjecture
%J Geometry & topology
%D 2007
%P 2117-2202
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2117/
%R 10.2140/gt.2007.11.2117
%F GT_2007_11_4_a3
Taubes, Clifford Henry. The Seiberg–Witten equations and the Weinstein conjecture. Geometry & topology, Tome 11 (2007) no. 4, pp. 2117-2202. doi : 10.2140/gt.2007.11.2117. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.2117/

[1] C Abbas, K Cieliebak, H Hofer, The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005) 771

[2] M Berger, P Gauduchon, E Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Mathematics 194, Springer (1971)

[3] N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer (2004)

[4] W Chen, Pseudo-holomorphic curves and the Weinstein conjecture, Comm. Anal. Geom. 8 (2000) 115

[5] S Y Cheng, P Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56 (1981) 327

[6] V Colin, K Honda, Reeb vector fields and open book decompositions I: the periodic case, preprint (2005)

[7] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[8] D T Gay, Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006) 1749

[9] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[10] H Hofer, Dynamics, topology, and holomorphic curves, from: "Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998)" (1998) 255

[11] H Hofer, Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35

[12] H Hofer, Holomorphic curves and real three-dimensional dynamics, Geom. Funct. Anal. (2000) 674

[13] K Honda, The topology and geometry of contact structures in dimension three, from: "International Congress of Mathematicians. Vol. II", Eur. Math. Soc., Zürich (2006) 705

[14] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169

[15] A Jaffe, C Taubes, Vortices and monopoles, Progress in Physics 2, Birkhäuser (1980)

[16] T Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften 132, Springer New York, New York (1966)

[17] P. Kronheimer, T. Mrowka, Monopoles and Three-Manifolds, New Mathematical Monographs 10, Cambridge University Press (2007) 770

[18] S. Molchanov, Diffusion process in Riemannian geometry, Uspekhi Mat. Nauk 30 (1975) 1

[19] C B Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966)

[20] Y G Oh, Floer mini-max theory, the Cerf diagram, and the spectral invariants

[21] T H Parker, Geodesics and approximate heat kernels

[22] M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419

[23] R T Seeley, Complex powers of an elliptic operator, from: "Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966)", Amer. Math. Soc. (1967) 288

[24] S Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965) 861

[25] C H Taubes, Asymptotic spectral flow for Dirac operators, to appear in Commun. Analysis and Geometry

[26] C H Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221

[27] C H Taubes, $\mathrm{Gr}{\Rightarrow}\mathrm{SW}$: from pseudo-holomorphic curves to Seiberg–Witten solutions, J. Differential Geom. 51 (1999) 203

[28] C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, from: "Seiberg Witten and Gromov invariants for symplectic 4-manifolds" (editor C H Taubes), First Int. Press Lect. Ser. 2, Int. Press, Somerville, MA (2000) 1

[29] C H Taubes, Seiberg Witten and Gromov invariants for symplectic 4—manifolds, First International Press Lecture Series 2, International Press (2000)

[30] A Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979) 353

Cité par Sources :