Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Can the model structure of a stable model category be recovered from the triangulated structure of its homotopy category? This paper introduces a new positive example for this, namely the –local stable homotopy at the prime 2. For odd primes, however, this is not true: we discuss a counterexample given by Jens Franke and show how such exotic models for the –local stable homotopy category at odd primes can be detected.
Roitzheim, Constanze 1
@article{GT_2007_11_4_a0, author = {Roitzheim, Constanze}, title = {Rigidity and exotic models for the {K{\textendash}local} stable homotopy category}, journal = {Geometry & topology}, pages = {1855--1886}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2007}, doi = {10.2140/gt.2007.11.1855}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1855/} }
TY - JOUR AU - Roitzheim, Constanze TI - Rigidity and exotic models for the K–local stable homotopy category JO - Geometry & topology PY - 2007 SP - 1855 EP - 1886 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1855/ DO - 10.2140/gt.2007.11.1855 ID - GT_2007_11_4_a0 ER -
Roitzheim, Constanze. Rigidity and exotic models for the K–local stable homotopy category. Geometry & topology, Tome 11 (2007) no. 4, pp. 1855-1886. doi : 10.2140/gt.2007.11.1855. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1855/
[1] The localization of spaces with respect to homology, Topology 14 (1975) 133
,[2] The localization of spectra with respect to homology, Topology 18 (1979) 257
,[3] On the homotopy theory of $K$–local spectra at an odd prime, Amer. J. Math. 107 (1985) 895
,[4] Homotopy theory of $\Gamma$–spaces, spectra, and bisimplicial sets, from: "Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II", Lecture Notes in Math. 658, Springer (1978) 80
, ,[5] The discrete module category for the ring of $K$–theory operations, Topology 46 (2007) 139
, , ,[6] Replacing model categories with simplicial ones, Trans. Amer. Math. Soc. 353 (2001) 5003
,[7] Uniqueness theorems for certain triangulated categories possessing an adams spectral sequence, preprint (1996)
,[8] Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser Verlag (1999)
, ,[9] Model categories and their localizations, Mathematical Surveys and Monographs 99, American Mathematical Society (2003)
,[10] Nilpotence and stable homotopy theory II, Ann. of Math. $(2)$ 148 (1998) 1
, ,[11] Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999)
,[12] Deriving DG categories, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 63
,[13] Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967)
,[14] Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984) 351
,[15] Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press (1986)
,[16] On the algebraic classification of $K$–local spectra,
,[17] The stable homotopy category is rigid, preprint (2005)
,[18] A uniqueness theorem for stable homotopy theory, Math. Z. 239 (2002) 803
, ,[19] Composition methods in homotopy groups of spheres, Annals of Mathematics Studies 49, Princeton University Press (1962)
,Cité par Sources :