Rigidity and exotic models for the K–local stable homotopy category
Geometry & topology, Tome 11 (2007) no. 4, pp. 1855-1886.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Can the model structure of a stable model category be recovered from the triangulated structure of its homotopy category? This paper introduces a new positive example for this, namely the K–local stable homotopy at the prime 2. For odd primes, however, this is not true: we discuss a counterexample given by Jens Franke and show how such exotic models for the K–local stable homotopy category at odd primes can be detected.

DOI : 10.2140/gt.2007.11.1855
Keywords: stable homotopy theory, model categories, Bousfield localisation

Roitzheim, Constanze 1

1 Department of Pure Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
@article{GT_2007_11_4_a0,
     author = {Roitzheim, Constanze},
     title = {Rigidity and exotic models for the {K{\textendash}local} stable homotopy category},
     journal = {Geometry & topology},
     pages = {1855--1886},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2007},
     doi = {10.2140/gt.2007.11.1855},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1855/}
}
TY  - JOUR
AU  - Roitzheim, Constanze
TI  - Rigidity and exotic models for the K–local stable homotopy category
JO  - Geometry & topology
PY  - 2007
SP  - 1855
EP  - 1886
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1855/
DO  - 10.2140/gt.2007.11.1855
ID  - GT_2007_11_4_a0
ER  - 
%0 Journal Article
%A Roitzheim, Constanze
%T Rigidity and exotic models for the K–local stable homotopy category
%J Geometry & topology
%D 2007
%P 1855-1886
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1855/
%R 10.2140/gt.2007.11.1855
%F GT_2007_11_4_a0
Roitzheim, Constanze. Rigidity and exotic models for the K–local stable homotopy category. Geometry & topology, Tome 11 (2007) no. 4, pp. 1855-1886. doi : 10.2140/gt.2007.11.1855. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1855/

[1] A K Bousfield, The localization of spaces with respect to homology, Topology 14 (1975) 133

[2] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257

[3] A K Bousfield, On the homotopy theory of $K$–local spectra at an odd prime, Amer. J. Math. 107 (1985) 895

[4] A K Bousfield, E M Friedlander, Homotopy theory of $\Gamma$–spaces, spectra, and bisimplicial sets, from: "Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II", Lecture Notes in Math. 658, Springer (1978) 80

[5] F Clarke, M Crossley, S Whitehouse, The discrete module category for the ring of $K$–theory operations, Topology 46 (2007) 139

[6] D Dugger, Replacing model categories with simplicial ones, Trans. Amer. Math. Soc. 353 (2001) 5003

[7] J Franke, Uniqueness theorems for certain triangulated categories possessing an adams spectral sequence, preprint (1996)

[8] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser Verlag (1999)

[9] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, American Mathematical Society (2003)

[10] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory II, Ann. of Math. $(2)$ 148 (1998) 1

[11] M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999)

[12] B Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 63

[13] D G Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967)

[14] D C Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984) 351

[15] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press (1986)

[16] C Roitzheim, On the algebraic classification of $K$–local spectra,

[17] S Schwede, The stable homotopy category is rigid, preprint (2005)

[18] S Schwede, B Shipley, A uniqueness theorem for stable homotopy theory, Math. Z. 239 (2002) 803

[19] H Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies 49, Princeton University Press (1962)

Cité par Sources :