Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We compute the asymptotical growth rate of a large family of
–symbols
and we interpret our results in geometric terms by relating them to volumes of hyperbolic
truncated tetrahedra. We address a question which is strictly related with S Gukov’s
generalized volume conjecture and deals with the case of hyperbolic links in connected
sums of .
We answer this question for the infinite family of fundamental shadow links.
Corrections The paper was republished with corrections on 19 October
2007.
Costantino, Francesco 1
@article{GT_2007_11_3_a16, author = {Costantino, Francesco}, title = {6j{\textendash}symbols, hyperbolic structures and the volume conjecture}, journal = {Geometry & topology}, pages = {1831--1854}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2007}, doi = {10.2140/gt.2007.11.1831}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1831/} }
TY - JOUR AU - Costantino, Francesco TI - 6j–symbols, hyperbolic structures and the volume conjecture JO - Geometry & topology PY - 2007 SP - 1831 EP - 1854 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1831/ DO - 10.2140/gt.2007.11.1831 ID - GT_2007_11_3_a16 ER -
Costantino, Francesco. 6j–symbols, hyperbolic structures and the volume conjecture. Geometry & topology, Tome 11 (2007) no. 3, pp. 1831-1854. doi : 10.2140/gt.2007.11.1831. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1831/
[1] Quantum hyperbolic invariants of $3$–manifolds with $\mathrm{PSL}(2,\mathbb C)$–characters, Topology 43 (2004) 1373
, ,[2] Classical and quantum dilogarithmic invariants of flat $\mathrm{PSL}(2,\mathbb{C})$–bundles over $3$–manifolds, Geom. Topol. 9 (2005) 493
, ,[3] Quantum hyperbolic geometry (2006)
, ,[4] Colored Jones invariants of links in $\#S^2 \times S^1$ and the volume conjecture (2007)
,[5] $3$–manifolds efficiently bound $4$–manifolds (2005)
, ,[6] 23040 symmetries of hyperbolic tetrahedra (2003)
, ,[7] Construction and recognition of hyperbolic $3$–manifolds with geodesic boundary, Trans. Amer. Math. Soc. 356 (2004) 3243
, ,[8] Asymptotics of the colored Jones function of a knot (2007)
, ,[9] Three-dimensional quantum gravity, Chern–Simons theory, and the A–polynomial, Comm. Math. Phys. 255 (2005) 577
,[10] The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269
,[11] A proof of the volume conjecture on torus knots, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 269 (2000) 262, 370
, ,[12] Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. (N.S.) 6 (1982) 9
,[13] The Regge symmetry is a scissors congruence in hyperbolic space, Algebr. Geom. Topol. 3 (2003) 1
,[14] The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85
, ,[15] Asymptotic behaviors of the colored Jones polynomial of a torus knot (2004)
, ,[16] Kashaev's conjecture and the Chern–Simons invariants of knots and links, Experiment. Math. 11 (2002) 427
, , , , ,[17] The colored Jones polynomial of the figure eight knot and its Dehn surgery spaces
, ,[18] On the volume of a hyperbolic and spherical tetrahedron, Comm. Anal. Geom. 13 (2005) 379
, ,[19] Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307
, ,[20] Classical $6j$–symbols and the tetrahedron, Geom. Topol. 3 (1999) 21
,[21] $6j$ symbols for $U_q(sl_2)$ and non-Euclidean tetrahedra, Selecta Math. (N.S.) 11 (2005) 539
, ,[22] The geometry and topology of three manifolds
,[23] Quantum invariants of knots and $3$–manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter Co. (1994)
,[24] A volume formula for generalised hyperbolic tetrahedra, from: "Non-Euclidean geometries", Math. Appl. (N. Y.) 581, Springer (2006) 249
,[25] The volume conjecture for Whitehead chains (2006)
,[26] Proof of the volume conjecture for Whitehead doubles of a family of torus knots (2005)
,Cité par Sources :