6j–symbols, hyperbolic structures and the volume conjecture
Geometry & topology, Tome 11 (2007) no. 3, pp. 1831-1854.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the asymptotical growth rate of a large family of Uq(sl2) 6j–symbols and we interpret our results in geometric terms by relating them to volumes of hyperbolic truncated tetrahedra. We address a question which is strictly related with S Gukov’s generalized volume conjecture and deals with the case of hyperbolic links in connected sums of S2 × S1. We answer this question for the infinite family of fundamental shadow links.
Corrections  The paper was republished with corrections on 19 October 2007.

DOI : 10.2140/gt.2007.11.1831
Keywords: Jones polynomial, volume conjecture, hyperbolic volume, $6j$–symbol, quantum invariant

Costantino, Francesco 1

1 7, Rue René Descartes IRMA, Strasbourg 67000, France
@article{GT_2007_11_3_a16,
     author = {Costantino, Francesco},
     title = {6j{\textendash}symbols, hyperbolic structures and the volume conjecture},
     journal = {Geometry & topology},
     pages = {1831--1854},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1831},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1831/}
}
TY  - JOUR
AU  - Costantino, Francesco
TI  - 6j–symbols, hyperbolic structures and the volume conjecture
JO  - Geometry & topology
PY  - 2007
SP  - 1831
EP  - 1854
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1831/
DO  - 10.2140/gt.2007.11.1831
ID  - GT_2007_11_3_a16
ER  - 
%0 Journal Article
%A Costantino, Francesco
%T 6j–symbols, hyperbolic structures and the volume conjecture
%J Geometry & topology
%D 2007
%P 1831-1854
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1831/
%R 10.2140/gt.2007.11.1831
%F GT_2007_11_3_a16
Costantino, Francesco. 6j–symbols, hyperbolic structures and the volume conjecture. Geometry & topology, Tome 11 (2007) no. 3, pp. 1831-1854. doi : 10.2140/gt.2007.11.1831. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1831/

[1] S Baseilhac, R Benedetti, Quantum hyperbolic invariants of $3$–manifolds with $\mathrm{PSL}(2,\mathbb C)$–characters, Topology 43 (2004) 1373

[2] S Baseilhac, R Benedetti, Classical and quantum dilogarithmic invariants of flat $\mathrm{PSL}(2,\mathbb{C})$–bundles over $3$–manifolds, Geom. Topol. 9 (2005) 493

[3] S Baseilhac, R Benedetti, Quantum hyperbolic geometry (2006)

[4] F Costantino, Colored Jones invariants of links in $\#S^2 \times S^1$ and the volume conjecture (2007)

[5] F Costantino, D P Thurston, $3$–manifolds efficiently bound $4$–manifolds (2005)

[6] P Doyle, G Leibon, 23040 symmetries of hyperbolic tetrahedra (2003)

[7] R Frigerio, C Petronio, Construction and recognition of hyperbolic $3$–manifolds with geodesic boundary, Trans. Amer. Math. Soc. 356 (2004) 3243

[8] S Garoufalidis, T Le, Asymptotics of the colored Jones function of a knot (2007)

[9] S Gukov, Three-dimensional quantum gravity, Chern–Simons theory, and the A–polynomial, Comm. Math. Phys. 255 (2005) 577

[10] R M Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269

[11] R M Kashaev, O Tirkkonen, A proof of the volume conjecture on torus knots, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 269 (2000) 262, 370

[12] J Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. (N.S.) 6 (1982) 9

[13] Y Mohanty, The Regge symmetry is a scissors congruence in hyperbolic space, Algebr. Geom. Topol. 3 (2003) 1

[14] H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85

[15] H Murakami, J Murakami, Asymptotic behaviors of the colored Jones polynomial of a torus knot (2004)

[16] H Murakami, J Murakami, M Okamoto, T Takata, Y Yokota, Kashaev's conjecture and the Chern–Simons invariants of knots and links, Experiment. Math. 11 (2002) 427

[17] H Murakami, Y Yokota, The colored Jones polynomial of the figure eight knot and its Dehn surgery spaces

[18] J Murakami, M Yano, On the volume of a hyperbolic and spherical tetrahedron, Comm. Anal. Geom. 13 (2005) 379

[19] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307

[20] J Roberts, Classical $6j$–symbols and the tetrahedron, Geom. Topol. 3 (1999) 21

[21] Y U Taylor, C T Woodward, $6j$ symbols for $U_q(sl_2)$ and non-Euclidean tetrahedra, Selecta Math. (N.S.) 11 (2005) 539

[22] W P Thurston, The geometry and topology of three manifolds

[23] V G Turaev, Quantum invariants of knots and $3$–manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter Co. (1994)

[24] A Ushijima, A volume formula for generalised hyperbolic tetrahedra, from: "Non-Euclidean geometries", Math. Appl. (N. Y.) 581, Springer (2006) 249

[25] R Van Der Veen, The volume conjecture for Whitehead chains (2006)

[26] H Zheng, Proof of the volume conjecture for Whitehead doubles of a family of torus knots (2005)

Cité par Sources :