Convex projective structures on Gromov–Thurston manifolds
Geometry & topology, Tome 11 (2007) no. 3, pp. 1777-1830.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study Gromov–Thurston examples of negatively curved n–manifolds which do not admit metrics of constant sectional curvature. We show that for each n > 3 some of the Gromov–Thurston manifolds admit strictly convex real-projective structures.

DOI : 10.2140/gt.2007.11.1777
Keywords: real projective structures

Kapovich, Michael 1

1 Department of Mathematics, University of California, Davis, CA 95616, USA
@article{GT_2007_11_3_a15,
     author = {Kapovich, Michael},
     title = {Convex projective structures on {Gromov{\textendash}Thurston} manifolds},
     journal = {Geometry & topology},
     pages = {1777--1830},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1777},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1777/}
}
TY  - JOUR
AU  - Kapovich, Michael
TI  - Convex projective structures on Gromov–Thurston manifolds
JO  - Geometry & topology
PY  - 2007
SP  - 1777
EP  - 1830
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1777/
DO  - 10.2140/gt.2007.11.1777
ID  - GT_2007_11_3_a15
ER  - 
%0 Journal Article
%A Kapovich, Michael
%T Convex projective structures on Gromov–Thurston manifolds
%J Geometry & topology
%D 2007
%P 1777-1830
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1777/
%R 10.2140/gt.2007.11.1777
%F GT_2007_11_3_a15
Kapovich, Michael. Convex projective structures on Gromov–Thurston manifolds. Geometry & topology, Tome 11 (2007) no. 3, pp. 1777-1830. doi : 10.2140/gt.2007.11.1777. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1777/

[1] A F Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer (1983)

[2] Y Benoist, Convexes divisibles I, from: "Algebraic groups and arithmetic", Tata Inst. Fund. Res. (2004) 339

[3] Y Benoist, Convexes hyperboliques et quasiisométries, Geom. Dedicata 122 (2006) 109

[4] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)

[5] S Choi, W M Goldman, The deformation spaces of convex $\mathbb{RP}^2$–structures on $2$–orbifolds, Amer. J. Math. 127 (2005) 1019

[6] C H Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952) 555

[7] E Ghys, P De La Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)

[8] W Goldman, Lecture notes of a course on affine and projective structures on manifolds (1988)

[9] W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791

[10] M Gromov, W Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987) 1

[11] M Kapovich, Kleinian groups in higher dimensions (2006)

[12] M Kapovich, J J Millson, Bending deformations of representations of fundamental groups of complexes of groups (1996)

[13] M Kapovich, J J Millson, Hodge theory and the art of paper folding, Publ. Res. Inst. Math. Sci. 33 (1997) 1

[14] J Lee, A convexity theorem for real projective structures

[15] J Maubon, Variations d'entropies et déformations de structures conformes plates sur les variétés hyperboliques compactes, Ergodic Theory Dynam. Systems 20 (2000) 1735

[16] P Susskind, G A Swarup, Limit sets of geometrically finite hyperbolic groups, Amer. J. Math. 114 (1992) 233

[17] È B Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072

Cité par Sources :