Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this note, we exhibit a method to prove the Baum–Connes conjecture (with coefficients) for extensions with finite quotients of certain groups which already satisfy the Baum–Connes conjecture. Interesting examples to which this method applies are torsion-free finite extensions of the pure braid groups, eg the full braid groups, and fundamental groups of certain link complements in .
Schick, Thomas 1
@article{GT_2007_11_3_a14, author = {Schick, Thomas}, title = {Finite group extensions and the {Baum{\textendash}Connes} conjecture}, journal = {Geometry & topology}, pages = {1767--1775}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2007}, doi = {10.2140/gt.2007.11.1767}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1767/} }
Schick, Thomas. Finite group extensions and the Baum–Connes conjecture. Geometry & topology, Tome 11 (2007) no. 3, pp. 1767-1775. doi : 10.2140/gt.2007.11.1767. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1767/
[1] Classifying space for proper actions and $K$–theory of group $C^{*}$–algebras, from: "$C^{*}$–algebras: 1943–1993 (San Antonio, TX, 1993)", Contemp. Math. 167, Amer. Math. Soc. (1994) 240
, , ,[2] Permanence properties of the Baum–Connes conjecture, Doc. Math. 6 (2001) 127
, ,[3] The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985) 77
, ,[4] Random walk in random groups, Geom. Funct. Anal. 13 (2003) 73
,[5] Operator $K$–theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc. 3 (1997) 131
, ,[6] $E$–theory and $KK$–theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) 23
, ,[7] Counterexamples to the Baum–Connes conjecture, Geom. Funct. Anal. 12 (2002) 330
, , ,[8] Travaux de N. Higson et G. Kasparov sur la conjecture de Baum–Connes, Astérisque (1998) 4, 151
,[9] Towards the Atiyah conjecture for link groups and their extensions, PhD thesis, Georg-August-Universität Göttingen (2007)
,[10] Galois cohomology of completed link groups (2007)
, , ,[11] Finite group extensions and the Atiyah conjecture, J. Amer. Math. Soc. 20 (2007) 1003
, ,[12] The Baum–Connes and the Farrell–Jones conjectures in $K$- and $L$-theory, from: "Handbook of $K$-theory. Vol. 1, 2", Springer (2005) 703
, ,[13] \, J. Reine Angew. Math. 177 (1937) 105
,[14] Proper group actions and the Baum-Connes conjecture, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag (2003)
, ,[15] La conjecture de Baum–Connes pour les groupes agissant sur les arbres, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 799
,[16] Baum–Connes conjecture and extensions, J. Reine Angew. Math. 532 (2001) 133
,[17] Profinite groups, London Mathematical Society Monographs. New Series 19, The Clarendon Press Oxford University Press (1998)
,Cité par Sources :