Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using combinatorial Morse theory on the CW–complex constructed by Salvetti [Invent. Math. 88 (1987) 603–618] which gives the homotopy type of the complement to a complexified real arrangement of hyperplanes, we find an explicit combinatorial gradient vector field on , such that contracts over a minimal CW–complex.
The existence of such minimal complex was proved before Dimca and Padadima [Ann. of Math. (2) 158 (2003) 473–507] and Randell [Proc. Amer. Math. Soc. 130 (2002) 2737–2743] and there exists also some description of it by Yoshinaga [Kodai Math. J. (2007)]. Our description seems much more explicit and allows to find also an algebraic complex computing local system cohomology, where the boundary operator is effectively computable.
Salvetti, Mario 1 ; Settepanella, Simona 2
@article{GT_2007_11_3_a13, author = {Salvetti, Mario and Settepanella, Simona}, title = {Combinatorial {Morse} theory and minimality of hyperplane arrangements}, journal = {Geometry & topology}, pages = {1733--1766}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2007}, doi = {10.2140/gt.2007.11.1733}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1733/} }
TY - JOUR AU - Salvetti, Mario AU - Settepanella, Simona TI - Combinatorial Morse theory and minimality of hyperplane arrangements JO - Geometry & topology PY - 2007 SP - 1733 EP - 1766 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1733/ DO - 10.2140/gt.2007.11.1733 ID - GT_2007_11_3_a13 ER -
%0 Journal Article %A Salvetti, Mario %A Settepanella, Simona %T Combinatorial Morse theory and minimality of hyperplane arrangements %J Geometry & topology %D 2007 %P 1733-1766 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1733/ %R 10.2140/gt.2007.11.1733 %F GT_2007_11_3_a13
Salvetti, Mario; Settepanella, Simona. Combinatorial Morse theory and minimality of hyperplane arrangements. Geometry & topology, Tome 11 (2007) no. 3, pp. 1733-1766. doi : 10.2140/gt.2007.11.1733. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1733/
[1] Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1992) 105
, ,[2] Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann (1968)
,[3] Cohomology and intersection cohomology of complex hyperplane arrangements, Adv. Math. 97 (1993) 231
,[4] Arrangements and local systems, Math. Res. Lett. 7 (2000) 299
, ,[5] Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments, Ann. of Math. $(2)$ 158 (2003) 473
, ,[6] Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992) 557
, , ,[7] Morse theory for cell complexes, Adv. Math. 134 (1998) 90
,[8] A user's guide to discrete Morse theory, Sém. Lothar. Combin. 48 (2002)
,[9] Cohomology of the braid group $\mathrm{mod} 2$, Funkcional. Anal. i Priložen. 4 (1970) 62
,[10] Algebraic and topological invariants of oriented matroids, Dokl. Akad. Nauk SSSR 307 (1989) 791
, ,[11] Homology of a local system on the complement of hyperplanes, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986) 144
,[12] Cohomology of the Orlik–Solomon algebras and local systems, Compositio Math. 121 (2000) 337
, ,[13] Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften 300, Springer (1992)
, ,[14] Morse theory, Milnor fibers and minimality of hyperplane arrangements, Proc. Amer. Math. Soc. 130 (2002) 2737
,[15] Topology of the complement of real hyperplanes in $\mathbb{C}^N$, Invent. Math. 88 (1987) 603
,[16] The homotopy type of Artin groups, Math. Res. Lett. 1 (1994) 565
,[17] Local systems over complements of hyperplanes and the Kac–Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995) 93
, , ,[18] Translated tori in the characteristic varieties of complex hyperplane arrangements, Topology Appl. 118 (2002) 209
,[19] Hyperplane arrangements and Lefschetz's hyperplane section theorem, to appear in Kodai Math. J. (2007)
,[20] Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975)
,Cité par Sources :