Combinatorial Morse theory and minimality of hyperplane arrangements
Geometry & topology, Tome 11 (2007) no. 3, pp. 1733-1766.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Using combinatorial Morse theory on the CW–complex S constructed by Salvetti [Invent. Math. 88 (1987) 603–618] which gives the homotopy type of the complement to a complexified real arrangement of hyperplanes, we find an explicit combinatorial gradient vector field on S, such that S contracts over a minimal CW–complex.

The existence of such minimal complex was proved before Dimca and Padadima [Ann. of Math. (2) 158 (2003) 473–507] and Randell [Proc. Amer. Math. Soc. 130 (2002) 2737–2743] and there exists also some description of it by Yoshinaga [Kodai Math. J. (2007)]. Our description seems much more explicit and allows to find also an algebraic complex computing local system cohomology, where the boundary operator is effectively computable.

DOI : 10.2140/gt.2007.11.1733
Keywords: Morse theory, arrangements, combinatorics

Salvetti, Mario 1 ; Settepanella, Simona 2

1 Dipartimento di Matematica “L Tonelli", Università di Pisa, Largo B Pontecorvo 5, 56127 Pisa, Italy
2 Dipartimento di Matematica “L Tonelli", Universitaà di Pisa, Largo B Pontecorvo 5, 56127 Pisa, Italy
@article{GT_2007_11_3_a13,
     author = {Salvetti, Mario and Settepanella, Simona},
     title = {Combinatorial {Morse} theory and minimality of hyperplane arrangements},
     journal = {Geometry & topology},
     pages = {1733--1766},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1733},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1733/}
}
TY  - JOUR
AU  - Salvetti, Mario
AU  - Settepanella, Simona
TI  - Combinatorial Morse theory and minimality of hyperplane arrangements
JO  - Geometry & topology
PY  - 2007
SP  - 1733
EP  - 1766
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1733/
DO  - 10.2140/gt.2007.11.1733
ID  - GT_2007_11_3_a13
ER  - 
%0 Journal Article
%A Salvetti, Mario
%A Settepanella, Simona
%T Combinatorial Morse theory and minimality of hyperplane arrangements
%J Geometry & topology
%D 2007
%P 1733-1766
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1733/
%R 10.2140/gt.2007.11.1733
%F GT_2007_11_3_a13
Salvetti, Mario; Settepanella, Simona. Combinatorial Morse theory and minimality of hyperplane arrangements. Geometry & topology, Tome 11 (2007) no. 3, pp. 1733-1766. doi : 10.2140/gt.2007.11.1733. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1733/

[1] A Björner, G M Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1992) 105

[2] N Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann (1968)

[3] D C Cohen, Cohomology and intersection cohomology of complex hyperplane arrangements, Adv. Math. 97 (1993) 231

[4] D C Cohen, P Orlik, Arrangements and local systems, Math. Res. Lett. 7 (2000) 299

[5] A Dimca, S Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments, Ann. of Math. $(2)$ 158 (2003) 473

[6] H Esnault, V Schechtman, E Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992) 557

[7] R Forman, Morse theory for cell complexes, Adv. Math. 134 (1998) 90

[8] R Forman, A user's guide to discrete Morse theory, Sém. Lothar. Combin. 48 (2002)

[9] D B Fuks, Cohomology of the braid group $\mathrm{mod} 2$, Funkcional. Anal. i Priložen. 4 (1970) 62

[10] I M Gelfand, G L Rybnikov, Algebraic and topological invariants of oriented matroids, Dokl. Akad. Nauk SSSR 307 (1989) 791

[11] T Kohno, Homology of a local system on the complement of hyperplanes, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986) 144

[12] A Libgober, S Yuzvinsky, Cohomology of the Orlik–Solomon algebras and local systems, Compositio Math. 121 (2000) 337

[13] P Orlik, H Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften 300, Springer (1992)

[14] R Randell, Morse theory, Milnor fibers and minimality of hyperplane arrangements, Proc. Amer. Math. Soc. 130 (2002) 2737

[15] M Salvetti, Topology of the complement of real hyperplanes in $\mathbb{C}^N$, Invent. Math. 88 (1987) 603

[16] M Salvetti, The homotopy type of Artin groups, Math. Res. Lett. 1 (1994) 565

[17] V Schechtman, H Terao, A Varchenko, Local systems over complements of hyperplanes and the Kac–Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995) 93

[18] A I Suciu, Translated tori in the characteristic varieties of complex hyperplane arrangements, Topology Appl. 118 (2002) 209

[19] M Yoshinaga, Hyperplane arrangements and Lefschetz's hyperplane section theorem, to appear in Kodai Math. J. (2007)

[20] T Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975)

Cité par Sources :