Triangle inequalities in path metric spaces
Geometry & topology, Tome 11 (2007) no. 3, pp. 1653-1680.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study side-lengths of triangles in path metric spaces. We prove that unless such a space X is bounded, or quasi-isometric to + or to , every triple of real numbers satisfying the strict triangle inequalities, is realized by the side-lengths of a triangle in X. We construct an example of a complete path metric space quasi-isometric to 2 for which every degenerate triangle has one side which is shorter than a certain uniform constant.

DOI : 10.2140/gt.2007.11.1653
Keywords: path metric spaces, triangles

Kapovich, Michael 1

1 Department of Mathematics, University of California, Davis, Davis CA 95616, USA
@article{GT_2007_11_3_a10,
     author = {Kapovich, Michael},
     title = {Triangle inequalities in path metric spaces},
     journal = {Geometry & topology},
     pages = {1653--1680},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1653},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1653/}
}
TY  - JOUR
AU  - Kapovich, Michael
TI  - Triangle inequalities in path metric spaces
JO  - Geometry & topology
PY  - 2007
SP  - 1653
EP  - 1680
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1653/
DO  - 10.2140/gt.2007.11.1653
ID  - GT_2007_11_3_a10
ER  - 
%0 Journal Article
%A Kapovich, Michael
%T Triangle inequalities in path metric spaces
%J Geometry & topology
%D 2007
%P 1653-1680
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1653/
%R 10.2140/gt.2007.11.1653
%F GT_2007_11_3_a10
Kapovich, Michael. Triangle inequalities in path metric spaces. Geometry & topology, Tome 11 (2007) no. 3, pp. 1653-1680. doi : 10.2140/gt.2007.11.1653. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1653/

[1] K S Brown, Buildings, Springer (1989)

[2] D Burago, Y Burago, S Ivanov, A course in metric geometry, Graduate Studies in Mathematics 33, American Mathematical Society (2001)

[3] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser (1999)

[4] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)

[5] M Kapovich, B Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of 3–manifolds, Geom. Funct. Anal. 5 (1995) 582

[6] J Roe, Lectures on coarse geometry, University Lecture Series 31, American Mathematical Society (2003)

Cité par Sources :