A dual version of the ribbon graph decomposition of moduli space
Geometry & topology, Tome 11 (2007) no. 3, pp. 1637-1652.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This note gives a construction of a dual version of the ribbon graph decomposition of the moduli spaces of Riemann surfaces.

DOI : 10.2140/gt.2007.11.1637
Keywords: moduli space, ribbon graphs

Costello, Kevin 1

1 Department of Mathematics, Northwestern University, 033 Sheridan Road, Evanston IL 60208-2730, USA
@article{GT_2007_11_3_a9,
     author = {Costello, Kevin},
     title = {A dual version of the ribbon graph decomposition of moduli space},
     journal = {Geometry & topology},
     pages = {1637--1652},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1637},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1637/}
}
TY  - JOUR
AU  - Costello, Kevin
TI  - A dual version of the ribbon graph decomposition of moduli space
JO  - Geometry & topology
PY  - 2007
SP  - 1637
EP  - 1652
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1637/
DO  - 10.2140/gt.2007.11.1637
ID  - GT_2007_11_3_a9
ER  - 
%0 Journal Article
%A Costello, Kevin
%T A dual version of the ribbon graph decomposition of moduli space
%J Geometry & topology
%D 2007
%P 1637-1652
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1637/
%R 10.2140/gt.2007.11.1637
%F GT_2007_11_3_a9
Costello, Kevin. A dual version of the ribbon graph decomposition of moduli space. Geometry & topology, Tome 11 (2007) no. 3, pp. 1637-1652. doi : 10.2140/gt.2007.11.1637. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1637/

[1] K Costello, The ${A}_\infty$ operad and the moduli space of curves (2004)

[2] K Costello, Topological conformal field theories and Calabi–Yau categories, Advances in Mathematics 210(1) (2007)

[3] F Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction (2000)

[4] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[5] M Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1

[6] M Kontsevich, Feynman diagrams and low-dimensional topology, from: "First European Congress of Mathematics, Vol. II (Paris, 1992)", Progr. Math. 120, Birkhäuser (1994) 97

[7] C C M Liu, Moduli of J–holomorphic curves with Lagrangian boundary conditions and open Gromov–Witten invariants for an $S^1$–equivariant pair (2202)

[8] B Noohi, Foundations of topological stacks I (2005)

[9] R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299

Cité par Sources :