The Extended Bloch Group and the Cheeger–Chern–Simons Class
Geometry & topology, Tome 11 (2007) no. 3, pp. 1623-1635.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We present a formula for the full Cheeger–Chern–Simons class of the tautological flat complex vector bundle of rank 2 over BSL(2, δ). This improves the formula by Dupont and Zickert [Geom. Topol. 10 (2006) 1347–1372], where the class is only computed modulo 2–torsion.

DOI : 10.2140/gt.2007.11.1623
Keywords: Extended Bloch group, Cheeger-Chern-Simons class, Rogers dilogarithm

Goette, Sebastian 1 ; Zickert, Christian 2

1 Mathematisches Institut, Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany
2 Department of Mathematics, Columbia University, New York NY 10027, USA
@article{GT_2007_11_3_a8,
     author = {Goette, Sebastian and Zickert, Christian},
     title = {The {Extended} {Bloch} {Group} and the {Cheeger{\textendash}Chern{\textendash}Simons} {Class}},
     journal = {Geometry & topology},
     pages = {1623--1635},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1623},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1623/}
}
TY  - JOUR
AU  - Goette, Sebastian
AU  - Zickert, Christian
TI  - The Extended Bloch Group and the Cheeger–Chern–Simons Class
JO  - Geometry & topology
PY  - 2007
SP  - 1623
EP  - 1635
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1623/
DO  - 10.2140/gt.2007.11.1623
ID  - GT_2007_11_3_a8
ER  - 
%0 Journal Article
%A Goette, Sebastian
%A Zickert, Christian
%T The Extended Bloch Group and the Cheeger–Chern–Simons Class
%J Geometry & topology
%D 2007
%P 1623-1635
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1623/
%R 10.2140/gt.2007.11.1623
%F GT_2007_11_3_a8
Goette, Sebastian; Zickert, Christian. The Extended Bloch Group and the Cheeger–Chern–Simons Class. Geometry & topology, Tome 11 (2007) no. 3, pp. 1623-1635. doi : 10.2140/gt.2007.11.1623. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1623/

[1] J Cheeger, J Simons, Differential characters and geometric invariants, from: "Geometry and topology (College Park, MD, 1983/84)", Lecture Notes in Mathematics 1167, Springer (1985) 50

[2] S S Chern, J Simons, Characteristic forms and geometric invariants, Ann. of Math. $(2)$ 99 (1974) 48

[3] J L Dupont, The dilogarithm as a characteristic class for flat bundles, J. Pure Appl. Algebra 44 (1-3) (1987) 137

[4] J L Dupont, Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics 1, World Scientific Publishing Co. (2001)

[5] J L Dupont, C H Sah, Scissors congruences II, J. Pure Appl. Algebra 25 (1982) 159

[6] J L Dupont, C K Zickert, A dilogarithmic formula for the Cheeger–Chern–Simons class, Geom. Topol. 10 (2006) 1347

[7] A B Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995) 197

[8] W D Neumann, Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413

Cité par Sources :