Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We present a formula for the full Cheeger–Chern–Simons class of the tautological flat complex vector bundle of rank over . This improves the formula by Dupont and Zickert [Geom. Topol. 10 (2006) 1347–1372], where the class is only computed modulo 2–torsion.
Goette, Sebastian 1 ; Zickert, Christian 2
@article{GT_2007_11_3_a8, author = {Goette, Sebastian and Zickert, Christian}, title = {The {Extended} {Bloch} {Group} and the {Cheeger{\textendash}Chern{\textendash}Simons} {Class}}, journal = {Geometry & topology}, pages = {1623--1635}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2007}, doi = {10.2140/gt.2007.11.1623}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1623/} }
TY - JOUR AU - Goette, Sebastian AU - Zickert, Christian TI - The Extended Bloch Group and the Cheeger–Chern–Simons Class JO - Geometry & topology PY - 2007 SP - 1623 EP - 1635 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1623/ DO - 10.2140/gt.2007.11.1623 ID - GT_2007_11_3_a8 ER -
%0 Journal Article %A Goette, Sebastian %A Zickert, Christian %T The Extended Bloch Group and the Cheeger–Chern–Simons Class %J Geometry & topology %D 2007 %P 1623-1635 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1623/ %R 10.2140/gt.2007.11.1623 %F GT_2007_11_3_a8
Goette, Sebastian; Zickert, Christian. The Extended Bloch Group and the Cheeger–Chern–Simons Class. Geometry & topology, Tome 11 (2007) no. 3, pp. 1623-1635. doi : 10.2140/gt.2007.11.1623. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1623/
[1] Differential characters and geometric invariants, from: "Geometry and topology (College Park, MD, 1983/84)", Lecture Notes in Mathematics 1167, Springer (1985) 50
, ,[2] Characteristic forms and geometric invariants, Ann. of Math. $(2)$ 99 (1974) 48
, ,[3] The dilogarithm as a characteristic class for flat bundles, J. Pure Appl. Algebra 44 (1-3) (1987) 137
,[4] Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics 1, World Scientific Publishing Co. (2001)
,[5] Scissors congruences II, J. Pure Appl. Algebra 25 (1982) 159
, ,[6] A dilogarithmic formula for the Cheeger–Chern–Simons class, Geom. Topol. 10 (2006) 1347
, ,[7] Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995) 197
,[8] Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413
,Cité par Sources :