Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a closed orientable Euclidean cone 3–manifold with cone angles and which is not almost product, we describe the space of constant curvature cone structures on with cone angles . We establish a regeneration result for such Euclidean cone manifolds into spherical or hyperbolic ones and we also deduce global rigidity for Euclidean cone structures.
Porti, Joan 1 ; Weiß, Hartmut 2
@article{GT_2007_11_3_a5, author = {Porti, Joan and Wei{\ss}, Hartmut}, title = {Deforming {Euclidean} cone 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {1507--1538}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2007}, doi = {10.2140/gt.2007.11.1507}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1507/} }
Porti, Joan; Weiß, Hartmut. Deforming Euclidean cone 3–manifolds. Geometry & topology, Tome 11 (2007) no. 3, pp. 1507-1538. doi : 10.2140/gt.2007.11.1507. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1507/
[1] On the solutions of analytic equations, Invent. Math. 5 (1968) 277
,[2] Geometrization of 3–dimensional orbifolds, Ann. of Math. $(2)$ 162 (2005) 195
, , ,[3] Geometrization of 3–orbifolds of cyclic type, Astérisque (2001) 208
, ,[4] Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser., Cambridge Univ. Press (1987) 3
, , ,[5] Lifting representations to covering groups, Adv. in Math. 59 (1986) 64
,[6] On deforming discrete groups in Lie Groups (1977)
,[7] The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200
,[8] Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations (Boulder, CO, 1987)", Contemp. Math. 74, Amer. Math. Soc. (1988) 169
,[9] A characterization of arithmetic subgroups of $\mathrm{SL}(2,\mathbb{R})$ and $\mathrm{SL}(2,\mathbb{C})$, Math. Nachr. 159 (1992) 245
, , ,[10] On the remarkable properties of the hyperbolic Whitehead link cone-manifold, from: "Knots in Hellas '98 (Delphi)", Ser. Knots Everything 24, World Sci. Publ., River Edge, NJ (2000) 290
,[11] Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (1998) 365
,[12] Properties of Euclidean Whitehead link cone-manifolds, Siberian Adv. Math. 13 (2003) 55
,[13] Poliedros de Dirichlet de 3–variedades cónicas y sus deformaciones, PhD thesis, Universidad Complutense de Madrid (1998)
,[14] Local rigidity of 3–dimensional cone-manifolds, J. Differential Geom. 71 (2005) 437
,[15] Global rigidity of 3–dimensional cone-manifolds, J. Diff. Geom. 76 (2007) 495
,Cité par Sources :