Deforming Euclidean cone 3–manifolds
Geometry & topology, Tome 11 (2007) no. 3, pp. 1507-1538.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a closed orientable Euclidean cone 3–manifold C with cone angles π and which is not almost product, we describe the space of constant curvature cone structures on C with cone angles < π. We establish a regeneration result for such Euclidean cone manifolds into spherical or hyperbolic ones and we also deduce global rigidity for Euclidean cone structures.

DOI : 10.2140/gt.2007.11.1507
Keywords: cone 3–manifold, deformation space

Porti, Joan 1 ; Weiß, Hartmut 2

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
2 Mathematisches Institut, Universität München, Theresienstraße 39, D-80333 München, Germany
@article{GT_2007_11_3_a5,
     author = {Porti, Joan and Wei{\ss}, Hartmut},
     title = {Deforming {Euclidean} cone 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {1507--1538},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1507},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1507/}
}
TY  - JOUR
AU  - Porti, Joan
AU  - Weiß, Hartmut
TI  - Deforming Euclidean cone 3–manifolds
JO  - Geometry & topology
PY  - 2007
SP  - 1507
EP  - 1538
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1507/
DO  - 10.2140/gt.2007.11.1507
ID  - GT_2007_11_3_a5
ER  - 
%0 Journal Article
%A Porti, Joan
%A Weiß, Hartmut
%T Deforming Euclidean cone 3–manifolds
%J Geometry & topology
%D 2007
%P 1507-1538
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1507/
%R 10.2140/gt.2007.11.1507
%F GT_2007_11_3_a5
Porti, Joan; Weiß, Hartmut. Deforming Euclidean cone 3–manifolds. Geometry & topology, Tome 11 (2007) no. 3, pp. 1507-1538. doi : 10.2140/gt.2007.11.1507. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1507/

[1] M Artin, On the solutions of analytic equations, Invent. Math. 5 (1968) 277

[2] M Boileau, B Leeb, J Porti, Geometrization of 3–dimensional orbifolds, Ann. of Math. $(2)$ 162 (2005) 195

[3] M Boileau, J Porti, Geometrization of 3–orbifolds of cyclic type, Astérisque (2001) 208

[4] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser., Cambridge Univ. Press (1987) 3

[5] M Culler, Lifting representations to covering groups, Adv. in Math. 59 (1986) 64

[6] W M Goldman, On deforming discrete groups in Lie Groups (1977)

[7] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200

[8] W M Goldman, Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations (Boulder, CO, 1987)", Contemp. Math. 74, Amer. Math. Soc. (1988) 169

[9] H M Hilden, M T Lozano, J M Montesinos-Amilibia, A characterization of arithmetic subgroups of $\mathrm{SL}(2,\mathbb{R})$ and $\mathrm{SL}(2,\mathbb{C})$, Math. Nachr. 159 (1992) 245

[10] A D Mednykh, On the remarkable properties of the hyperbolic Whitehead link cone-manifold, from: "Knots in Hellas '98 (Delphi)", Ser. Knots Everything 24, World Sci. Publ., River Edge, NJ (2000) 290

[11] J Porti, Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (1998) 365

[12] R N Shmatkov, Properties of Euclidean Whitehead link cone-manifolds, Siberian Adv. Math. 13 (2003) 55

[13] Suárez, Poliedros de Dirichlet de 3–variedades cónicas y sus deformaciones, PhD thesis, Universidad Complutense de Madrid (1998)

[14] H Weiss, Local rigidity of 3–dimensional cone-manifolds, J. Differential Geom. 71 (2005) 437

[15] H Weiss, Global rigidity of 3–dimensional cone-manifolds, J. Diff. Geom. 76 (2007) 495

Cité par Sources :