Refined analytic torsion as an element of the determinant line
Geometry & topology, Tome 11 (2007) no. 1, pp. 139-213.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a canonical element, called the refined analytic torsion, of the determinant line of the cohomology of a closed oriented odd-dimensional manifold M with coefficients in a flat complex vector bundle E. We compute the Ray–Singer norm of the refined analytic torsion. In particular, if there exists a flat Hermitian metric on E, we show that this norm is equal to 1. We prove a duality theorem, establishing a relationship between the refined analytic torsions corresponding to a flat connection and its dual.

DOI : 10.2140/gt.2007.11.139
Keywords: determinant line, Ray–Singer, eta-invariant, analytic torsion

Braverman, Maxim 1 ; Kappeler, Thomas 2

1 Department of Mathematics, Northeastern University, Boston MA 02115, USA
2 Institut fur Mathematik, Universitat Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
@article{GT_2007_11_1_a2,
     author = {Braverman, Maxim and Kappeler, Thomas},
     title = {Refined analytic torsion as an element of the determinant line},
     journal = {Geometry & topology},
     pages = {139--213},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2007},
     doi = {10.2140/gt.2007.11.139},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.139/}
}
TY  - JOUR
AU  - Braverman, Maxim
AU  - Kappeler, Thomas
TI  - Refined analytic torsion as an element of the determinant line
JO  - Geometry & topology
PY  - 2007
SP  - 139
EP  - 213
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.139/
DO  - 10.2140/gt.2007.11.139
ID  - GT_2007_11_1_a2
ER  - 
%0 Journal Article
%A Braverman, Maxim
%A Kappeler, Thomas
%T Refined analytic torsion as an element of the determinant line
%J Geometry & topology
%D 2007
%P 139-213
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.139/
%R 10.2140/gt.2007.11.139
%F GT_2007_11_1_a2
Braverman, Maxim; Kappeler, Thomas. Refined analytic torsion as an element of the determinant line. Geometry & topology, Tome 11 (2007) no. 1, pp. 139-213. doi : 10.2140/gt.2007.11.139. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.139/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405

[3] N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Springer (1992)

[4] J M Bismut, W Zhang, An extension of a theorem by Cheeger and Müller, Astérisque (1992) 235

[5] M Braverman, T Kappeler, A refinement of the Ray–Singer torsion, C. R. Math. Acad. Sci. Paris 341 (2005) 497

[6] M Braverman, T Kappeler, Comparison of the refined analytic and the Burghelea–Haller torsions (2006)

[7] M Braverman, T Kappeler, Refined analytic torsion as an element of the determinant line, IHES preprint M/05/49 (2006)

[8] M Braverman, T Kappeler, Ray–Singer type theorem for the refined analytic torsion, J. Funct. Anal. 243 (2007) 232

[9] M Braverman, T Kappeler, Refined Analytic Torsion, J. Diff. Geom. (to appear)

[10] J Brüning, M Lesch, On the $\eta$–invariant of certain nonlocal boundary value problems, Duke Math. J. 96 (1999) 425

[11] D Burghelea, L Friedlander, T Kappeler, Asymptotic expansion of the Witten deformation of the analytic torsion, J. Funct. Anal. 137 (1996) 320

[12] D Burghelea, S Haller, Torsion as a function of the space of representations (2005)

[13] D Burghelea, S Haller, Complex valued Ray–Singer torsion II (2006)

[14] D Burghelea, S Haller, Euler structures, the variety of representations and the Milnor–Turaev torsion, Geom. Topol. 10 (2006) 1185

[15] P Deligne, Le déterminant de la cohomologie, from: "Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985)", Contemp. Math. 67, Amer. Math. Soc. (1987) 93

[16] M Farber, Absolute torsion and eta-invariant, Math. Z. 234 (2000) 339

[17] M Farber, V Turaev, Absolute torsion, from: "Tel Aviv Topology Conference: Rothenberg Festschrift (1998)", Contemp. Math. 231, Amer. Math. Soc. (1999) 73

[18] M Farber, V Turaev, Poincaré–Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math. 520 (2000) 195

[19] P B Gilkey, The eta invariant and secondary characteristic classes of locally flat bundles, from: "Algebraic and differential topology – global differential geometry", Teubner–Texte Math. 70, Teubner (1984) 49

[20] G Grubb, R T Seeley, Weakly parametric pseudodifferential operators and Atiyah–Patodi–Singer boundary problems, Invent. Math. 121 (1995) 481

[21] V Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. in Math. 55 (1985) 131

[22] R T Huang, Refined analytic torsion and the eta-invariant, PhD thesis (in preparation)

[23] R T Huang, Refined analytic torsion: comparison theorems and examples, Illinois J. Math. (to appear)

[24] A S Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs 71, American Mathematical Society (1988)

[25] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358

[26] L I Nicolaescu, The Reidemeister torsion of 3-manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter Co. (2003)

[27] R Ponge, Spectral asymmetry, zeta Functions and the noncommutative residue, Int. Math. J. (to appear)

[28] D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96

[29] D B Ray, I M Singer, $R$–torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145

[30] Y B Rudyak, On Thom spectra, orientability and cobordism, Springer Monographs in Mathematics, Springer (1998)

[31] R T Seeley, Complex powers of an elliptic operator, from: "Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966)", Amer. Math. Soc. (1967) 288

[32] M A Shubin, Pseudodifferential operators and spectral theory, Springer (2001)

[33] I M Singer, Families of Dirac operators with applications to physics, Astérisque (1985) 323

[34] G Su, W Zhang, A Cheeger–Mueller theorem for symmetric bilinear torsions,

[35] V G Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97, 240

[36] V G Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672

[37] V Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)

[38] C T C Wall, Determination of the cobordism ring, Ann. of Math. $(2)$ 72 (1960) 292

[39] M Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 (1984) 143

[40] M Wodzicki, Noncommutative residue. I. Fundamentals, from: "$K$–theory, arithmetic and geometry (Moscow, 1984–1986)", Lecture Notes in Math., Springer (1987) 320

[41] K P Wojciechowski, Heat equation and spectral geometry. Introduction for beginners, from: "Geometric methods for quantum field theory (Villa de Leyva, 1999)", World Sci. Publ., River Edge, NJ (2001) 238

Cité par Sources :