Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a canonical element, called the refined analytic torsion, of the determinant line of the cohomology of a closed oriented odd-dimensional manifold with coefficients in a flat complex vector bundle . We compute the Ray–Singer norm of the refined analytic torsion. In particular, if there exists a flat Hermitian metric on , we show that this norm is equal to 1. We prove a duality theorem, establishing a relationship between the refined analytic torsions corresponding to a flat connection and its dual.
Braverman, Maxim 1 ; Kappeler, Thomas 2
@article{GT_2007_11_1_a2, author = {Braverman, Maxim and Kappeler, Thomas}, title = {Refined analytic torsion as an element of the determinant line}, journal = {Geometry & topology}, pages = {139--213}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2007}, doi = {10.2140/gt.2007.11.139}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.139/} }
TY - JOUR AU - Braverman, Maxim AU - Kappeler, Thomas TI - Refined analytic torsion as an element of the determinant line JO - Geometry & topology PY - 2007 SP - 139 EP - 213 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.139/ DO - 10.2140/gt.2007.11.139 ID - GT_2007_11_1_a2 ER -
Braverman, Maxim; Kappeler, Thomas. Refined analytic torsion as an element of the determinant line. Geometry & topology, Tome 11 (2007) no. 1, pp. 139-213. doi : 10.2140/gt.2007.11.139. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.139/
[1] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[2] Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405
, , ,[3] Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Springer (1992)
, , ,[4] An extension of a theorem by Cheeger and Müller, Astérisque (1992) 235
, ,[5] A refinement of the Ray–Singer torsion, C. R. Math. Acad. Sci. Paris 341 (2005) 497
, ,[6] Comparison of the refined analytic and the Burghelea–Haller torsions (2006)
, ,[7] Refined analytic torsion as an element of the determinant line, IHES preprint M/05/49 (2006)
, ,[8] Ray–Singer type theorem for the refined analytic torsion, J. Funct. Anal. 243 (2007) 232
, ,[9] Refined Analytic Torsion, J. Diff. Geom. (to appear)
, ,[10] On the $\eta$–invariant of certain nonlocal boundary value problems, Duke Math. J. 96 (1999) 425
, ,[11] Asymptotic expansion of the Witten deformation of the analytic torsion, J. Funct. Anal. 137 (1996) 320
, , ,[12] Torsion as a function of the space of representations (2005)
, ,[13] Complex valued Ray–Singer torsion II (2006)
, ,[14] Euler structures, the variety of representations and the Milnor–Turaev torsion, Geom. Topol. 10 (2006) 1185
, ,[15] Le déterminant de la cohomologie, from: "Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985)", Contemp. Math. 67, Amer. Math. Soc. (1987) 93
,[16] Absolute torsion and eta-invariant, Math. Z. 234 (2000) 339
,[17] Absolute torsion, from: "Tel Aviv Topology Conference: Rothenberg Festschrift (1998)", Contemp. Math. 231, Amer. Math. Soc. (1999) 73
, ,[18] Poincaré–Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math. 520 (2000) 195
, ,[19] The eta invariant and secondary characteristic classes of locally flat bundles, from: "Algebraic and differential topology – global differential geometry", Teubner–Texte Math. 70, Teubner (1984) 49
,[20] Weakly parametric pseudodifferential operators and Atiyah–Patodi–Singer boundary problems, Invent. Math. 121 (1995) 481
, ,[21] A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. in Math. 55 (1985) 131
,[22] Refined analytic torsion and the eta-invariant, PhD thesis (in preparation)
,[23] Refined analytic torsion: comparison theorems and examples, Illinois J. Math. (to appear)
,[24] Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs 71, American Mathematical Society (1988)
,[25] Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358
,[26] The Reidemeister torsion of 3-manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter Co. (2003)
,[27] Spectral asymmetry, zeta Functions and the noncommutative residue, Int. Math. J. (to appear)
,[28] Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96
,[29] $R$–torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145
, ,[30] On Thom spectra, orientability and cobordism, Springer Monographs in Mathematics, Springer (1998)
,[31] Complex powers of an elliptic operator, from: "Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966)", Amer. Math. Soc. (1967) 288
,[32] Pseudodifferential operators and spectral theory, Springer (2001)
,[33] Families of Dirac operators with applications to physics, Astérisque (1985) 323
,[34] A Cheeger–Mueller theorem for symmetric bilinear torsions,
, ,[35] Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97, 240
,[36] Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672
,[37] Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)
,[38] Determination of the cobordism ring, Ann. of Math. $(2)$ 72 (1960) 292
,[39] Local invariants of spectral asymmetry, Invent. Math. 75 (1984) 143
,[40] Noncommutative residue. I. Fundamentals, from: "$K$–theory, arithmetic and geometry (Moscow, 1984–1986)", Lecture Notes in Math., Springer (1987) 320
,[41] Heat equation and spectral geometry. Introduction for beginners, from: "Geometric methods for quantum field theory (Villa de Leyva, 1999)", World Sci. Publ., River Edge, NJ (2001) 238
,Cité par Sources :