Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Our main theorem is that, if is a closed hyperbolic 3–manifold which fibres over the circle with hyperbolic fibre and pseudo-Anosov monodromy, then the lift of the inclusion of in to universal covers extends to a continuous map of to , where . The restriction to maps onto and gives an example of an equivariant –filling Peano curve. After proving the main theorem, we discuss the case of the figure-eight knot complement, which provides evidence for the conjecture that the theorem extends to the case when is a once-punctured hyperbolic surface.
Cannon, James W 1 ; Thurston, William P 2
@article{GT_2007_11_3_a2, author = {Cannon, James W and Thurston, William P}, title = {Group invariant {Peano} curves}, journal = {Geometry & topology}, pages = {1315--1355}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2007}, doi = {10.2140/gt.2007.11.1315}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1315/} }
Cannon, James W; Thurston, William P. Group invariant Peano curves. Geometry & topology, Tome 11 (2007) no. 3, pp. 1315-1355. doi : 10.2140/gt.2007.11.1315. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1315/
[1] Two theorems on totally degenerate Kleinian groups, Amer. J. Math. 98 (1976) 109
,[2] Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. $(2)$ 124 (1986) 71
,[3] The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984) 123
,[4] Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque 66–67, Société Mathématique de France (1979) 1
, , , ,[5] Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925) 416
,[6] Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension $3$ fibrées sur $S^{1}$, from: "Séminaire Bourbaki 554 (1980)", Lecture Notes in Math. 842, Springer (1981) 196
,[7] Hyperbolic Structures on 3-manifolds, II: Surface groups and 3–manifolds which fiber over the circle
,[8] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)
,Cité par Sources :