Group invariant Peano curves
Geometry & topology, Tome 11 (2007) no. 3, pp. 1315-1355.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Our main theorem is that, if M is a closed hyperbolic 3–manifold which fibres over the circle with hyperbolic fibre S and pseudo-Anosov monodromy, then the lift of the inclusion of S in M to universal covers extends to a continuous map of B2 to B3, where Bn = Hn Sn1. The restriction to S1 maps onto S2 and gives an example of an equivariant S2–filling Peano curve. After proving the main theorem, we discuss the case of the figure-eight knot complement, which provides evidence for the conjecture that the theorem extends to the case when S is a once-punctured hyperbolic surface.

DOI : 10.2140/gt.2007.11.1315
Keywords: Peano curve, group invariance, hyperbolic structure, 3–manifold, pseudo-Anosov diffeomorphism, fiber bundle over $S^1$

Cannon, James W 1 ; Thurston, William P 2

1 279 TMCB, Brigham Young University, Provo, UT 84602, USA
2 Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, USA
@article{GT_2007_11_3_a2,
     author = {Cannon, James W and Thurston, William P},
     title = {Group invariant {Peano} curves},
     journal = {Geometry & topology},
     pages = {1315--1355},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1315},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1315/}
}
TY  - JOUR
AU  - Cannon, James W
AU  - Thurston, William P
TI  - Group invariant Peano curves
JO  - Geometry & topology
PY  - 2007
SP  - 1315
EP  - 1355
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1315/
DO  - 10.2140/gt.2007.11.1315
ID  - GT_2007_11_3_a2
ER  - 
%0 Journal Article
%A Cannon, James W
%A Thurston, William P
%T Group invariant Peano curves
%J Geometry & topology
%D 2007
%P 1315-1355
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1315/
%R 10.2140/gt.2007.11.1315
%F GT_2007_11_3_a2
Cannon, James W; Thurston, William P. Group invariant Peano curves. Geometry & topology, Tome 11 (2007) no. 3, pp. 1315-1355. doi : 10.2140/gt.2007.11.1315. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1315/

[1] W Abikoff, Two theorems on totally degenerate Kleinian groups, Amer. J. Math. 98 (1976) 109

[2] F Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. $(2)$ 124 (1986) 71

[3] J W Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984) 123

[4] A Fathi, F Laudenbach, V Poenaru, E Al, Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque 66–67, Société Mathématique de France (1979) 1

[5] R L Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925) 416

[6] D Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension $3$ fibrées sur $S^{1}$, from: "Séminaire Bourbaki 554 (1980)", Lecture Notes in Math. 842, Springer (1981) 196

[7] W P Thurston, Hyperbolic Structures on 3-manifolds, II: Surface groups and 3–manifolds which fiber over the circle

[8] W P Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)

Cité par Sources :