Desingularizing homology manifolds
Geometry & topology, Tome 11 (2007) no. 3, pp. 1289-1314.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that if Xn , n 6, is a compact ANR homology n–manifold, we can blow up the singularities of X to obtain an ANR homology n–manifold with the disjoint disks property. More precisely, we show that there is an ANR homology n–manifold Y with the disjoint disks property and a cell-like map f : Y X.

DOI : 10.2140/gt.2007.11.1289
Keywords: homology manifold, cell-like map, controlled topology

Bryant, J L 1 ; Ferry, Steven 2 ; Mio, Washington 1 ; Weinberger, Shmuel 3

1 Department of Mathematics, Florida State University, Tallahassee FL 32306, USA
2 Department of Mathematical Sciences, Rutgers University, Piscataway NJ 08854, USA
3 Department of Mathematics, The University of Chicago, Chicago IL 60637, USA
@article{GT_2007_11_3_a1,
     author = {Bryant, J L and Ferry, Steven and Mio, Washington and Weinberger, Shmuel},
     title = {Desingularizing homology manifolds},
     journal = {Geometry & topology},
     pages = {1289--1314},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2007},
     doi = {10.2140/gt.2007.11.1289},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1289/}
}
TY  - JOUR
AU  - Bryant, J L
AU  - Ferry, Steven
AU  - Mio, Washington
AU  - Weinberger, Shmuel
TI  - Desingularizing homology manifolds
JO  - Geometry & topology
PY  - 2007
SP  - 1289
EP  - 1314
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1289/
DO  - 10.2140/gt.2007.11.1289
ID  - GT_2007_11_3_a1
ER  - 
%0 Journal Article
%A Bryant, J L
%A Ferry, Steven
%A Mio, Washington
%A Weinberger, Shmuel
%T Desingularizing homology manifolds
%J Geometry & topology
%D 2007
%P 1289-1314
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1289/
%R 10.2140/gt.2007.11.1289
%F GT_2007_11_3_a1
Bryant, J L; Ferry, Steven; Mio, Washington; Weinberger, Shmuel. Desingularizing homology manifolds. Geometry & topology, Tome 11 (2007) no. 3, pp. 1289-1314. doi : 10.2140/gt.2007.11.1289. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1289/

[1] M Bestvina, Characterizing $k$–dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988)

[2] M Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960) 478

[3] J L Bryant, General position theorems for generalized manifolds, Proc. Amer. Math. Soc. 98 (1986) 667

[4] J Bryant, S Ferry, W Mio, S Weinberger, Topology of homology manifolds, Ann. of Math. $(2)$ 143 (1996) 435

[5] A V Cernavskii, A generalization of Keldysh's construction of a monotone map of a cube onto a cube of higher dimension, Russian Math. Surveys 40 (1985) 165

[6] T A Chapman, Approximation results in topological manifolds, Mem. Amer. Math. Soc. 34 (1981)

[7] T A Chapman, L C Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976) 171

[8] R J Daverman, L S Husch, Decompositions and approximate fibrations, Michigan Math. J. 31 (1984) 197

[9] J Dugundji, Topology, Allyn and Bacon (1978)

[10] R D Edwards, The topology of manifolds and cell-like maps, from: "Proceedings of the International Congress of Mathematicians (Helsinki, 1978)", Acad. Sci. Fennica (1980) 111

[11] S Ferry, Epsilon-delta surgery over $\mathbb{Z}$

[12] S Ferry, A stable converse to the Vietoris–Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261 (1980) 369

[13] S C Ferry, E K Pedersen, Epsilon surgery theory, from: "Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993)", London Math. Soc. Lecture Notes 227, Cambridge Univ. Press (1995) 167

[14] M W Hirsch, On normal microbundles, Topology 5 (1966) 229

[15] C B Hughes, Approximate fibrations on topological manifolds, Michigan Math. J. 32 (1985) 167

[16] K Kawamura, An inverse system approach to Menger manifolds, Topology Appl. 61 (1995) 281

[17] R C Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977) 495

[18] E K Pedersen, F Quinn, A Ranicki, Controlled surgery with trivial local fundamental groups, from: "High-dimensional manifold topology", World Sci. Publ., River Edge, NJ (2003) 421

[19] F Quinn, Ends of maps. I, Ann. of Math. $(2)$ 110 (1979) 275

[20] F Quinn, Resolutions of homology manifolds, and the topological characterization of manifolds, Invent. Math. 72 (1983) 267

[21] C P Rourke, B J Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer (1982)

[22] C T C Wall, Surgery on compact manifolds, London Math. Soc. Monographs 1, Academic Press (1970)

Cité par Sources :