Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that if , , is a compact ANR homology –manifold, we can blow up the singularities of to obtain an ANR homology –manifold with the disjoint disks property. More precisely, we show that there is an ANR homology –manifold with the disjoint disks property and a cell-like map .
Bryant, J L 1 ; Ferry, Steven 2 ; Mio, Washington 1 ; Weinberger, Shmuel 3
@article{GT_2007_11_3_a1, author = {Bryant, J L and Ferry, Steven and Mio, Washington and Weinberger, Shmuel}, title = {Desingularizing homology manifolds}, journal = {Geometry & topology}, pages = {1289--1314}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2007}, doi = {10.2140/gt.2007.11.1289}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1289/} }
TY - JOUR AU - Bryant, J L AU - Ferry, Steven AU - Mio, Washington AU - Weinberger, Shmuel TI - Desingularizing homology manifolds JO - Geometry & topology PY - 2007 SP - 1289 EP - 1314 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1289/ DO - 10.2140/gt.2007.11.1289 ID - GT_2007_11_3_a1 ER -
%0 Journal Article %A Bryant, J L %A Ferry, Steven %A Mio, Washington %A Weinberger, Shmuel %T Desingularizing homology manifolds %J Geometry & topology %D 2007 %P 1289-1314 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1289/ %R 10.2140/gt.2007.11.1289 %F GT_2007_11_3_a1
Bryant, J L; Ferry, Steven; Mio, Washington; Weinberger, Shmuel. Desingularizing homology manifolds. Geometry & topology, Tome 11 (2007) no. 3, pp. 1289-1314. doi : 10.2140/gt.2007.11.1289. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1289/
[1] Characterizing $k$–dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988)
,[2] Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960) 478
,[3] General position theorems for generalized manifolds, Proc. Amer. Math. Soc. 98 (1986) 667
,[4] Topology of homology manifolds, Ann. of Math. $(2)$ 143 (1996) 435
, , , ,[5] A generalization of Keldysh's construction of a monotone map of a cube onto a cube of higher dimension, Russian Math. Surveys 40 (1985) 165
,[6] Approximation results in topological manifolds, Mem. Amer. Math. Soc. 34 (1981)
,[7] Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976) 171
, ,[8] Decompositions and approximate fibrations, Michigan Math. J. 31 (1984) 197
, ,[9] Topology, Allyn and Bacon (1978)
,[10] The topology of manifolds and cell-like maps, from: "Proceedings of the International Congress of Mathematicians (Helsinki, 1978)", Acad. Sci. Fennica (1980) 111
,[11] Epsilon-delta surgery over $\mathbb{Z}$
,[12] A stable converse to the Vietoris–Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261 (1980) 369
,[13] Epsilon surgery theory, from: "Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993)", London Math. Soc. Lecture Notes 227, Cambridge Univ. Press (1995) 167
, ,[14] On normal microbundles, Topology 5 (1966) 229
,[15] Approximate fibrations on topological manifolds, Michigan Math. J. 32 (1985) 167
,[16] An inverse system approach to Menger manifolds, Topology Appl. 61 (1995) 281
,[17] Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977) 495
,[18] Controlled surgery with trivial local fundamental groups, from: "High-dimensional manifold topology", World Sci. Publ., River Edge, NJ (2003) 421
, , ,[19] Ends of maps. I, Ann. of Math. $(2)$ 110 (1979) 275
,[20] Resolutions of homology manifolds, and the topological characterization of manifolds, Invent. Math. 72 (1983) 267
,[21] Introduction to piecewise-linear topology, Springer Study Edition, Springer (1982)
, ,[22] Surgery on compact manifolds, London Math. Soc. Monographs 1, Academic Press (1970)
,Cité par Sources :