Shapes of geodesic nets
Geometry & topology, Tome 11 (2007) no. 2, pp. 1225-1254.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Mn be a closed Riemannian manifold of dimension n. In this paper we will show that either the length of a shortest periodic geodesic on Mn does not exceed (n + 1)d, where d is the diameter of Mn or there exist infinitely many geometrically distinct stationary closed geodesic nets on this manifold. We will also show that either the length of a shortest periodic geodesic is, similarly, bounded in terms of the volume of a manifold Mn, or there exist infinitely many geometrically distinct stationary closed geodesic nets on Mn.

DOI : 10.2140/gt.2007.11.1225
Keywords: closed geodesics, geodesic nets, geometric calculus of variations

Nabutovsky, Alexander 1 ; Rotman, Regina 1

1 Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada, Department of Mathematics, Penn State University, University Park PA 16802, USA
@article{GT_2007_11_2_a12,
     author = {Nabutovsky, Alexander and Rotman, Regina},
     title = {Shapes of geodesic nets},
     journal = {Geometry & topology},
     pages = {1225--1254},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2007},
     doi = {10.2140/gt.2007.11.1225},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1225/}
}
TY  - JOUR
AU  - Nabutovsky, Alexander
AU  - Rotman, Regina
TI  - Shapes of geodesic nets
JO  - Geometry & topology
PY  - 2007
SP  - 1225
EP  - 1254
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1225/
DO  - 10.2140/gt.2007.11.1225
ID  - GT_2007_11_2_a12
ER  - 
%0 Journal Article
%A Nabutovsky, Alexander
%A Rotman, Regina
%T Shapes of geodesic nets
%J Geometry & topology
%D 2007
%P 1225-1254
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1225/
%R 10.2140/gt.2007.11.1225
%F GT_2007_11_2_a12
Nabutovsky, Alexander; Rotman, Regina. Shapes of geodesic nets. Geometry & topology, Tome 11 (2007) no. 2, pp. 1225-1254. doi : 10.2140/gt.2007.11.1225. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1225/

[1] V Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math. 4 (1993) 1

[2] C B Croke, Area and the length of the shortest closed geodesic, J. Differential Geom. 27 (1988) 1

[3] J Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992) 403

[4] D Gromoll, W Meyer, On differentiable functions with isolated critical points, Topology 8 (1969) 361

[5] M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1

[6] J Hass, F Morgan, Geodesic nets on the $2$-sphere, Proc. Amer. Math. Soc. 124 (1996) 3843

[7] N Hingston, On the growth of the number of closed geodesics on the two-sphere, Internat. Math. Res. Notices (1993) 253

[8] A B Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 539

[9] A Nabutovsky, R Rotman, Volume, diameter and the minimal mass of a stationary 1-cycle, Geom. Funct. Anal. 14 (2004) 748

[10] A Nabutovsky, R Rotman, The minimal length of a closed geodesic net on a Riemannian manifold with a nontrivial second homology group, Geom. Dedicata 113 (2005) 243

[11] H B Rademacher, On the average indices of closed geodesics, J. Differential Geom. 29 (1989) 65

[12] R Rotman, The length of a shortest geodesic net on a closed Riemannian manifold, Topology 46 (2007) 343

[13] R Rotman, Flowers on Riemannian manifolds

[14] M Vigué-Poirrier, D Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976) 633

[15] W Ziller, Geometry of the Katok examples, Ergodic Theory Dynam. Systems 3 (1983) 135

Cité par Sources :