Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a Legendrian submanifold of the –jet space of a Riemannian –manifold . A correspondence is established between rigid flow trees in determined by and boundary punctured rigid pseudo-holomorphic disks in , with boundary on the projection of and asymptotic to the double points of this projection at punctures, provided , or provided and the front of has only cusp edge singularities. This result, in particular, shows how to compute the Legendrian contact homology of in terms of Morse theory.
Ekholm, Tobias 1
@article{GT_2007_11_2_a11, author = {Ekholm, Tobias}, title = {Morse flow trees and {Legendrian} contact homology in 1{\textendash}jet spaces}, journal = {Geometry & topology}, pages = {1083--1224}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2007}, doi = {10.2140/gt.2007.11.1083}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1083/} }
TY - JOUR AU - Ekholm, Tobias TI - Morse flow trees and Legendrian contact homology in 1–jet spaces JO - Geometry & topology PY - 2007 SP - 1083 EP - 1224 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1083/ DO - 10.2140/gt.2007.11.1083 ID - GT_2007_11_2_a11 ER -
Ekholm, Tobias. Morse flow trees and Legendrian contact homology in 1–jet spaces. Geometry & topology, Tome 11 (2007) no. 2, pp. 1083-1224. doi : 10.2140/gt.2007.11.1083. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1083/
[1] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441
,[2] The contact homology of conormal lifts of knots and links
, , , ,[3] Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 85
, , ,[4] The contact homology of Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 177
, , ,[5] Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453
, , ,[6] The Contact Homology of Legendrian Submanifolds in $P\times\mathbb{R}$, Trans. Amer. Math. Soc. (to appear)
, , ,[7] Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 327
,[8] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[9] Surgery on Lagrangian and Legendrian singularities, Geom. Funct. Anal. 9 (1999) 298
,[10] Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002) 321
, , ,[11] The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775
,[12] Witten's complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989) 207
,[13] Monopoles on asymptotically flat manifolds, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 3
,[14] Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96
, ,[15] Morse theory, Annals of Mathematics Studies 51, Princeton University Press (1963)
,[16] Knot and braid invariants from contact homology I, Geom. Topol. 9 (2005) 247
,[17] Knot and braid invariants from contact homology II, Geom. Topol. 9 (2005) 1603
,[18] Removal of boundary singularities of pseudo-holomorphic curves with Lagrangian boundary conditions, Comm. Pure Appl. Math. 45 (1992) 121
,[19] Some properties of holomorphic curves in almost complex manifolds, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 165
,[20] On gradient dynamical systems, Ann. of Math. $(2)$ 74 (1961) 199
,Cité par Sources :