Morse flow trees and Legendrian contact homology in 1–jet spaces
Geometry & topology, Tome 11 (2007) no. 2, pp. 1083-1224.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let L J1(M) be a Legendrian submanifold of the 1–jet space of a Riemannian n–manifold M. A correspondence is established between rigid flow trees in M determined by L and boundary punctured rigid pseudo-holomorphic disks in TM, with boundary on the projection of L and asymptotic to the double points of this projection at punctures, provided n 2, or provided n > 2 and the front of L has only cusp edge singularities. This result, in particular, shows how to compute the Legendrian contact homology of L in terms of Morse theory.

DOI : 10.2140/gt.2007.11.1083
Keywords: holomorphic disk, Morse theory, flow tree, contact homology, Legendrian, Lagrangian

Ekholm, Tobias 1

1 Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden
@article{GT_2007_11_2_a11,
     author = {Ekholm, Tobias},
     title = {Morse flow trees and {Legendrian} contact homology in 1{\textendash}jet spaces},
     journal = {Geometry & topology},
     pages = {1083--1224},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2007},
     doi = {10.2140/gt.2007.11.1083},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1083/}
}
TY  - JOUR
AU  - Ekholm, Tobias
TI  - Morse flow trees and Legendrian contact homology in 1–jet spaces
JO  - Geometry & topology
PY  - 2007
SP  - 1083
EP  - 1224
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1083/
DO  - 10.2140/gt.2007.11.1083
ID  - GT_2007_11_2_a11
ER  - 
%0 Journal Article
%A Ekholm, Tobias
%T Morse flow trees and Legendrian contact homology in 1–jet spaces
%J Geometry & topology
%D 2007
%P 1083-1224
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1083/
%R 10.2140/gt.2007.11.1083
%F GT_2007_11_2_a11
Ekholm, Tobias. Morse flow trees and Legendrian contact homology in 1–jet spaces. Geometry & topology, Tome 11 (2007) no. 2, pp. 1083-1224. doi : 10.2140/gt.2007.11.1083. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1083/

[1] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[2] T Ekholm, J Etnyre, L Ng, M Sullivan, The contact homology of conormal lifts of knots and links

[3] T Ekholm, J Etnyre, M Sullivan, Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 85

[4] T Ekholm, J Etnyre, M Sullivan, The contact homology of Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 177

[5] T Ekholm, J Etnyre, M Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453

[6] T Ekholm, J Etnyre, M Sullivan, The Contact Homology of Legendrian Submanifolds in $P\times\mathbb{R}$, Trans. Amer. Math. Soc. (to appear)

[7] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 327

[8] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[9] M Entov, Surgery on Lagrangian and Legendrian singularities, Geom. Funct. Anal. 9 (1999) 298

[10] J B Etnyre, L L Ng, J M Sabloff, Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002) 321

[11] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775

[12] A Floer, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989) 207

[13] A Floer, Monopoles on asymptotically flat manifolds, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 3

[14] K Fukaya, Y G Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96

[15] J Milnor, Morse theory, Annals of Mathematics Studies 51, Princeton University Press (1963)

[16] L Ng, Knot and braid invariants from contact homology I, Geom. Topol. 9 (2005) 247

[17] L Ng, Knot and braid invariants from contact homology II, Geom. Topol. 9 (2005) 1603

[18] Y G Oh, Removal of boundary singularities of pseudo-holomorphic curves with Lagrangian boundary conditions, Comm. Pure Appl. Math. 45 (1992) 121

[19] J C Sikorav, Some properties of holomorphic curves in almost complex manifolds, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 165

[20] S Smale, On gradient dynamical systems, Ann. of Math. $(2)$ 74 (1961) 199

Cité par Sources :