Spindle-configurations of skew lines
Geometry & topology, Tome 11 (2007) no. 2, pp. 1049-1081.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper is a contribution to the classification of configurations of skew lines, as studied mainly by Viro and his collaborators. We prove an improvement of a conjecture made by Crapo and Penne which characterizes isotopy classes of skew configurations with spindle-structure. By this result we can define an invariant, spindlegenus, for spindle-configurations.

DOI : 10.2140/gt.2007.11.1049
Keywords: configurations of skew lines, spindles, linking matrix, switching graphs, permutation

Bacher, Roland 1 ; Garber, David 2

1 Institut Fourier, BP 74 38402 Saint-Martin D’Heres Cedex, France
2 Department of Applied Mathematics, School of Sciences, Holon Institute of Technology, 52 Golomb Street, PO Box 305, 58102 Holon, Israel
@article{GT_2007_11_2_a10,
     author = {Bacher, Roland and Garber, David},
     title = {Spindle-configurations of skew lines},
     journal = {Geometry & topology},
     pages = {1049--1081},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2007},
     doi = {10.2140/gt.2007.11.1049},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1049/}
}
TY  - JOUR
AU  - Bacher, Roland
AU  - Garber, David
TI  - Spindle-configurations of skew lines
JO  - Geometry & topology
PY  - 2007
SP  - 1049
EP  - 1081
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1049/
DO  - 10.2140/gt.2007.11.1049
ID  - GT_2007_11_2_a10
ER  - 
%0 Journal Article
%A Bacher, Roland
%A Garber, David
%T Spindle-configurations of skew lines
%J Geometry & topology
%D 2007
%P 1049-1081
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1049/
%R 10.2140/gt.2007.11.1049
%F GT_2007_11_2_a10
Bacher, Roland; Garber, David. Spindle-configurations of skew lines. Geometry & topology, Tome 11 (2007) no. 2, pp. 1049-1081. doi : 10.2140/gt.2007.11.1049. http://geodesic.mathdoc.fr/articles/10.2140/gt.2007.11.1049/

[1] A Borobia, V F Mazurovskiĭ, On diagrams of configurations of 7 skew lines of $\mathbb{R}^3$, from: "Topology of real algebraic varieties and related topics", Amer. Math. Soc. Transl. Ser. 2 173, Amer. Math. Soc. (1996) 33

[2] A Borobia, V F Mazurovskiĭ, Nonsingular configurations of $7$ lines of $\mathbb{R}\mathbb{P}^3$, J. Knot Theory Ramifications 6 (1997) 751

[3] H Crapo, R Penne, Chirality and the isotopy classification of skew lines in projective $3$–space, Adv. Math. 103 (1994) 1

[4] Y V Drobotukhina, An analogue of the Jones polynomial for links in $\mathbb{R}\mathbb{P}^3$ and a generalization of the Kauffman–Murasugi theorem, Algebra i Analiz 2 (1990) 171

[5] B Grünbaum, Arrangements and spreads, American Mathematical Society Providence, R.I. (1972)

[6] S I Khashin, Projective theory of graphs, and configurations of lines, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 231 (1995) 309

[7] S I Khashin, V F Mazurovskiĭ, Stable equivalence of real projective configurations, from: "Topology of real algebraic varieties and related topics", Amer. Math. Soc. Transl. Ser. 2 173, Amer. Math. Soc. (1996) 119

[8] C L Mallows, N A Sloane, Two-graphs, switching classes and Euler graphs are equal in number, SIAM J. Appl. Math. 28 (1975) 876

[9] W S Massey, Algebraic topology: an introduction, Springer (1977)

[10] D Matei, A I Suciu, Homotopy types of complements of $2$–arrangements in $\mathbb{R}^4$, Topology 39 (2000) 61

[11] V F Mazurovskiĭ, Configurations of six skew lines, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988) 121, 191

[12] V F Mazurovskiĭ, Configurations of at most $6$ lines of $\mathbb{R}\mathbb{P}^3$, from: "Real algebraic geometry (Rennes, 1991)", Lecture Notes in Math. 1524, Springer (1992) 354

[13] J Pach, R Pollack, E Welzl, Weaving patterns of lines and line segments in space, Algorithmica 9 (1993) 561

[14] J J Seidel, Graphs and two-graphs, from: "Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974)", Congressus Numerantium X, Utilitas Math. (1974) 125

[15] N J A Sloane, The On-Line Encyclopedia of Integer Sequences

[16] O Y Viro, Topological problems on lines and points of three-dimensional space, Dokl. Akad. Nauk SSSR 284 (1985) 1049

[17] O Y Viro, Y V Drobotukhina, Configurations of skew-lines, Algebra i Analiz 1 (1989) 222

[18] T Zaslavsky, Glossary of signed and gain graphs and allied areas, Electron. J. Combin. 5 (1998)

Cité par Sources :