On the stable equivalence of open books in three-manifolds
Geometry & topology, Tome 10 (2006) no. 1, pp. 97-114.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that two open books in a given closed, oriented three-manifold admit isotopic stabilizations, where the stabilization is made by successive plumbings with Hopf bands, if and only if their associated plane fields are homologous. Since this condition is automatically fulfilled in an integral homology sphere, the theorem implies a conjecture of J Harer, namely, that any fibered link in the three-sphere can be obtained from the unknot by a sequence of plumbings and deplumbings of Hopf bands. The proof presented here involves contact geometry in an essential way.

DOI : 10.2140/gt.2006.10.97
Keywords: open books, fibered links, plumbing, plane fields, contact structures

Giroux, Emmanuel 1 ; Goodman, Noah 2

1 École Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
2 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
@article{GT_2006_10_1_a3,
     author = {Giroux, Emmanuel and Goodman, Noah},
     title = {On the stable equivalence of open books in three-manifolds},
     journal = {Geometry & topology},
     pages = {97--114},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     doi = {10.2140/gt.2006.10.97},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.97/}
}
TY  - JOUR
AU  - Giroux, Emmanuel
AU  - Goodman, Noah
TI  - On the stable equivalence of open books in three-manifolds
JO  - Geometry & topology
PY  - 2006
SP  - 97
EP  - 114
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.97/
DO  - 10.2140/gt.2006.10.97
ID  - GT_2006_10_1_a3
ER  - 
%0 Journal Article
%A Giroux, Emmanuel
%A Goodman, Noah
%T On the stable equivalence of open books in three-manifolds
%J Geometry & topology
%D 2006
%P 97-114
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.97/
%R 10.2140/gt.2006.10.97
%F GT_2006_10_1_a3
Giroux, Emmanuel; Goodman, Noah. On the stable equivalence of open books in three-manifolds. Geometry & topology, Tome 10 (2006) no. 1, pp. 97-114. doi : 10.2140/gt.2006.10.97. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.97/

[1] J Cerf, Sur les difféomorphismes de la sphère de dimension trois (Γ4 = 0), 53, Springer (1968)

[2] E Dufraine, Classes d’homotopie de champs de vecteurs Morse–Smale sans singularité sur les fibrés de Seifert, Enseign. Math. 51 (2005) 3

[3] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 | DOI

[4] D Gabai, The Murasugi sum is a natural geometric operation, from: "Low-dimensional topology (San Francisco, CA, 1981)", Contemp. Math. 20, Amer. Math. Soc. (1983) 131

[5] D Gabai, The Murasugi sum is a natural geometric operation II, from: "Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982)", Contemp. Math. 44, Amer. Math. Soc. (1985) 93

[6] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)", Higher Ed. Press (2002) 405

[7] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619

[8] J Harer, How to construct all fibered knots and links, Topology 21 (1982) 263 | DOI

[9] F Laudenbach, S Blank, Isotopie de formes fermées en dimension trois, Invent. Math. 54 (1979) 103 | DOI

[10] W D Neumann, L Rudolph, The enhanced Milnor number in higher dimensions, from: "Differential topology (Siegen, 1987)", Lecture Notes in Math. 1350, Springer (1988) 109

[11] J R Stallings, Constructions of fibred knots and links, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford, CA 1976), Part 2", Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 55

[12] W P Thurston, H E Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345

[13] I Torisu, Convex contact structures and fibered links in 3–manifolds, Internat. Math. Res. Notices (2000) 441 | DOI

[14] V G Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672

[15] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. 87 (1968) 56

Cité par Sources :